arxiv:g-bio/0401023v1 [g-bio.PE] 16 Jan 2004

Quantitative patternsin the structure of model and empirical
food webs

J. Camachb?, R. Guimed!, D. B. Stouffet, and L. A. N. Amaral

I Department of Chemical and Biological Engineering, Noristern University,
Evanston, IL 60208, USA
2 Departament de Bica (Fisica Estadstica), Universitat Auinoma de Barcelona,
E-08193 Bellaterra, Catalonia, Spain

RUNNING TITLE: Patterns in food web structure

1 Email: Juan.Camacho@uab.es, rguimera@northwestern.edouffes@northwestern.edu, and

amaral@northwestern.edu


http://arXiv.org/abs/q-bio/0401023v1

Patterns in food web structure, J. Camacho et al. 2

Abstract

We analyze the properties of model food webs and of fifteennconity food webs from a
variety of environments —including freshwater, marinestiwater interfaces and terrestrial
environments. We first perform a theoretical analysis ofamdy proposed model for food
webs—the niche model of Williams and Martinez (2000). Wewdeanalytical expressions for
the distributions of species’ number of prey, number of ptets, and total number of trophic
links and find that they follow universal functional forms.eVelso derive expressions for a
number of other biologically relevant parameters whicheshebon these distributions. These
include the fraction of top, intermediate, basal, and daainspecies, the standard deviations
of generality and vulnerability, the correlation coeffitidetween species’ number of prey and
number of predators, and assortativity. We show that oumrfgedare robust under rather general
conditions; a result which could not have been demonstraiaut treating the problem ana-
lytically. We then use our analytical predictions as a gualthe analysis of fifteen of the most
complete empirical food webs available. We uncover quatinté unifying patterns that describe
the properties of the model food webs and most of the tropklesiconsidered. Our results sup-
port a strong new hypothesis that the empirical distrimgiof number of prey and number of
predators followuniversal functional forms that, without free parametensitch our analytical
predictions Further, we find that the empirically observed correlatioefficient, assortativity,
and fraction of cannibal species are consistent with oulyéinal expressions and simulations
of the niche model. Finally, we show that two quantities ¢glly used to characterize com-
plex networks, the average distance between nodes anddhagawclustering coefficient of the
nodes, show a high degree of regularity for both the empidata and simulations of the niche
model. Our findings suggest that statistical physics cascegpch as scaling and universality
may be useful in the description of natural ecosystems.

Key words. Food webs, complex networks, network structure, scalingjersality, patterns.
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1 Introduction

In ecosystems, species are connected through intricgtkitreelationships which define com-
plex food webs|(Briand and Cohen, 1984; Cohen et al., |1990iawis and Martinez, 2000).
Understanding the structure and mechanisms underlyinfigth®tion of these complex webs is
of greatimportance in ecology (Rejmanek and Stary, 197@n8rand Cohen, 1987; Cohen et al.,
1990; ! Polis, 1991). In particular, food web structure pdeg insights into the behavior of
ecosystems under perturbations such as the introductiorewfspecies or the extinction of
existing ones. It is thought that the nonlinear responsehefdlements composing the net-
work may lead to possibly catastrophic outcomes for everllgmagurbationsi(Berlow, 1999;
Chapin et al.| 2000;_McKahn, 2000). Thus, an understandfritpeo topology and assembly
mechanisms of food webs may be of great practical interdbtnegard to crop selection, man-
agement of fishing stocks, preservation of threatened starsyg, and maintenance of biodiver-
sity (Pimm et al.| 1995; Stone, 1999; Covington, 2000; Himgi, 2000).

Due to the importance of food webs, much effort has been patdallecting empirical data

and uncovering unifying patterns which describe theirctre (Rejmanek and Stany, 1979;
Briand and Cohen, 1984, 1987; L awton and Wairen, 11988; Cehal) 1990; Hall and Raffae!lli,
1991;|Pimm et al., 1991; Palis, 1991; Martinez, 1993). Hoevein the last decade the con-
struction of larger and more complete food webs has cleatgahstrated that the previously
reported unifying patterns do not hold for the new webs (ldal Raffaelli| 1991, 1993; Pdlis,

1991). Indeed, the complexity of the new webs has renderpdté challenging to obtain quan-
titative patterns with which to “substitute” the old onzaufine et al., 2002).

The purpose of this work is twofold. First, to perform a thetaral analysis of a recently pro-
posed model for food webs—the niche model of Williams andtMar (2000). Second, to use
the predictions of the model as a guide to a systematic stafignalysis of community food

webs from a variety of environments.

Remarkably, we uncover quantitative unifying patterng tescribe the properties of most of
the diverse trophic webs considered and capture the randdm@n-random aspects of their
structure. Specifically, we find that several quantitiesehsas the distributions of number of
prey, number of predators, and number of trophic links—atiarizing these diverse food webs
obey robust functional forms that, as predicted by our arcalyresults for the niche model,

depend on a single parameter—the linkage density of the vieedml

The organization of the paper is as follows. In Section 2 welysthe niche model proposed
by Williams and Martinez[(2000) analytically and numerigaln Section 3 we analyze the
empirical food webs and show the existence of robust quaivet patterns. Finally, in Section
4 we present some concluding remarks.
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2 Analytical solution of the niche model

Recently, Williams and Martinez (2000) have proposed a rfmdood web structure—the
niche model—that with just a couple of ingredients appeassitcessfully predict key structural
properties of the most comprehensive food webs in the titeeaNumerical simulations of the
niche model predicted values for many quantities typicafigd to characterize empirical food
webs that are consistent with measured values for severmrieaipvebs.

In this Section, we systematically investigate the nichelehdrom atheoreticalperspective.
We obtain analytical expressions for a number of quantdiesacterizing the structure of food
webs in the limit of sparse food webs, i.e., webs with< S?, where L is the number of
trophic interactions between species @&id the number of species in the web. This limit is the
one of interest in ecology because (i) for most food websntedan the literature the directed
connectance, defined as= L/S?, take values much smaller than one, and (ii) it corresponds
to the limit of large web sizeS (Briand and Cohen, 1984, 1987; Solé etlal., 2002), whichas t
interesting limit if one surmises that geographically sepmecosystems are in fact connected.

We first calculate the probability distributions of numbémpeoey and of number of predators
and find that for” < 1 they depend only on one parameter of the model—the linkagsitye

z = L/S , i.e. the average number of prey or predators. These difitits give valuable
information about the structure of the network (Albert etla000) and enable us to calculate
other interesting quantities such as the fraction of “tdmtermediate,” and “basal” species,
and the standard deviation of the “vulnerability” and “geadigy” of the species in the food web
(Williams and Martinez, 2000). We also calculate the catieh coefficient between number of
prey and number of predators, the fraction of cannibalsgotesind two additional properties
of interest in the characterization of complex networks:dlierage “distance” between species
and the local redundancy of the connection between spabtiasy and Strogetz, 1998).

2.1 The niche model

Consider an ecosystem wihspecies and. trophic interactions between these species. These
species and interactions define a network withodes and. directed links. In the niche model,
one first randomly assigrisspecies to “trophic niches” with niche valuesmapped uniformly
onto the interval [0,1]. For convenience, we will assume tha species are ordered according
to their niche number, i.en; < ny < ... < ng.

A speciesi is characterized by its niche parametgrand by its list of prey. Prey are chosen
for all species according to the following rule: A speciggreys on all specieg with niche
parametern; inside a segment of length centered in a position chosen randomly inside the
interval [a; /2, n;], with a; = 2n; and0 < z < 1 a random variable with probability density
function

pe(z) =b(1—2)" . (1)
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Williams and Martinez/(2000) appeared to have chosen tmstional form for convenience,
but, we will show later that the predictions of the model arastty robust to changes in the
specific form ofp,.

The values of the parametdraind S determine the linkage density= L /S of the food web,
and the directed connectan€e= L/S?. Since the species are uniformly distributed along the
segment0, 1], one can express the average number of prey per species, aghere the bar
indicates an average over all species in the web. It theovislthat the linkage density is

z=5a (2)

and the connectance is

C=a. 3)

One can also obtain these expressions in termislof noting thatn andz are independent
variables, namely

R )

wheren = 1/2andz =1/ (1 +b).

In the niche model, isolated species—that is, species wiftrey or predators—are eliminated,
and species with the same list of prey and predators—th@bshically-identical species—are
“merged.” ForC' = @ < 1, the probability that two species are trophically idenrtisavery
small. This suggests that taxonomic and trophic classificatof species lead to similar results
in this limit (Williams and Martinez, 2000).

In the following subsections we derive analytical expressithat enable us to predict the prop-
erties of the webs generated by model.
2.2 Distribution of number of prey
For largeS, the number of prey of speciéss k; = Sa;, S0 that the probability of having prey
Dprey 1S given directly by the distribution of. Specifically,

Porey (k) = p(a)/5S'. ()
In order to evaluatg(a), let us note that is the product of two independent stochastic variables,

n andz, both ranging betweehand1. As illustrated in Fig. 1, it then follows that the cumulagiv
probability P(a' > a) = [, da’p(a’) is the probability that a pair of random valugs ) fall
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Fig. 1. Calculation of the distribution of segment length&ach point inside the — = diagram yields

a valuea = nz. The hyperbolenz = const divides the: — x plane in two regions, which we color
grey and white. The regioR, colored in grey, contains all the points for whieh> 0.5. Therefore, the

probability of drawing a paifn, z) belonging to regiorz can be calculated using Eq. (6).

in the regionRk of then — x diagram bounded by the lines= 1, n = 1, and the hyperbole
a = nx,

P(d' > a) :/lda'p(a/)

= / dx dnp,(n) p.(z)

:/1 dx /1 dn p,(n) p.(z), (6)

a/x

wherep, (n) = 1 is the probability density function fat. The integration of Eq. (6) gives rise
to a closed form involving hypergeometric functions (Gtadgn and Ryzhik, 2000).

However, we can obtain a simpler analytical solutionifr) than that given by the hypergeo-
metric functions as follows. In the limi' < 1, which impliesb > 1, p.(x) is negligible except
whenx < 1. We can then approximage as

pe(z) =b(1—2)"Y ~ pe " (7)
in the entirer-range and expect the results to remain unchanged in thiedirg 1. Under this
approximation, the solution of Eq. (6) yields

p(a) = bE; (ba), (8)
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Fig. 2. (A) Linear and (B) log-linear plots of the distribomi of number of prey for 1000 simulations
of food webs withS = 1000. We show results for = 5 and 10 and the corresponding theoretical
predictions. As predicted by Eq. (9), we find an exponenteaday of the distributions. (C) Log-linear
plot of the probability densities for the scaled number aypt /22 for finite C. We show results for

C = 0.05,0.1 and 0.2, for 50000 webs generated using the niche model. Dashed lines (snkg)li
correspond to simulations withh = 100 (S = 1000) for the appropriate values ef(namelyz = 5, 10,
and 20, for S = 100, andz = 50, 100, and 200 for S = 1000). The thick solid line is the theoretical
prediction in the limitC' — 0. One observes the collapse of distributions having the <zt different

S, similar to what we derived analytically far — 0. Note that the decay is faster than exponential for
finite C.

whereE, (z) = [>°dt t~! exp(—t) is the exponential-integral function (Gradstheyn and R;zh
2000). The probability distributiop,,., (k) is obtained from Eq. (8) making the substitutions
a = k/S andb = S/2z—which are valid in the limiC' <« 1—yielding

Pprey (k) = (1/22) Ex(k/22) . (9)

In Figs. 2(A) and (B) we compare the predictions of Eq. (9hwitimerical simulations of the
model. We find close agreement between our analytical esioresnd the numerical results.
In particular,p,.., sShows an exponential decay for largeThe deviations observed for small
values ofk are due to the fact that = Sa, is a good approximation only when the fluctuations
of k; are small, which is not true for smatl

Equation (9) depends only on the scaled number of py@¢. Thus, forany value of z, the
scaled variablé = k/2z obeys the same probability density function,

Porey (k) = E1(k) . (10)

This probability density function is therefore univerdgas,, it is identical for any values of
andz provided thatC is small. For finiteC', p,,.., has a truncation of the exponential decay at a
value ofk that is a decreasing function 6f. Remarkably, even for finit€, p,.., only depends
on C; cf. Fig. 3(A).
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Fig. 3. (A) Linear and (B) log-linear plots of the distribomi of number of predators for 1000 simula-
tions of food webs with5 = 1000. We show results for = 5 and10 and the corresponding theoretical
predictions. As predicted by Eq. (14), we find a regime whieedistribution is approximately uniform
followed by a Gaussian decay. (C) Log-linear plot of the winzdl expressions for the probability den-
sities for the scaled number of predaterg2z for three values ot. For all values ofz, we find an
approximately constant value pf,.q for m/2z < 1 (shaded region) and a fast Gaussian-like decay for
m/2z > 1.

2.3 Distribution of number of predators

For C' < 1 the predators of speciéhave niche values; > n;, and the segment; is placed
with equal probability in the interval, n;]. Therefore, the probability that a specijegreys on
i, providedn; > n,, is

aj/nj :xjnj/nj =y, (11)

implying that the average probability that a species with> n; preys on speciesis 7.

If one notes that specigshas(S — i) potential predators—those species with> n,—then
it follows that, in the limitC' < 1, the total number of predators ofis the result of(S —
i) independent “coin-throws” with probability of a given specieg, with n; > n;, being a
predator. This fact implies that the probability of speciémvingm predators is given by the
binomial distribution,

) = (5 a2 =y 2

m

It then follows that the distribution of number of predatéwsthe set of all species in the web
is an average over the binomials for the different values of

S—m S—m iy 4
pprod(m) = % E p;red(m) = % Z <S )Em<1 — E)S_m_l (13)
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In the limit of interest,S > 1, and withST = 2z, one can approximate the binomial distribution
by a Poisson and the sum by an integral, yielding

2z tme_t

1 1
ppred(m) = Z/dt m) = Z V(m + 17 22)7 (14)
0

where~ is the “incomplete gamma function!’ (Gradstheyn and RyzR®00). Form < 2z,
Dpred IS @pproximately constant becaugen + 1, 2z) ~ 1, while form > 2z p,,.q decays with
a Gaussian tail. In Figs. 2(A) and (B), we compare the pramtistof Eq. (14) with numerical
simulations and find good agreement.

Unlike the scaling seen for the distribution of number ofypEeg. (14) is not simply a function
of the scaled variable:/2z. However, for small values of./2z, ~ is a constant and thus it does
not depend om or z. So, the probability density for the scaled variable= m/2z,

Pprea() = y(2z2m +1,22) = 1 m <1 (15)

for anyz. Form > 1, p..qa() decays as a Gaussian. In Fig. 3(B) we show that the decay rate
of pyrea iINCreases withy, becoming a sharp step droprat= 1 asz — oc.

2.4 Distribution of number of trophic links

The number- of trophic links of a species is the sum of the number of prey mumber of
predators of that species. In Fig. 4, we display the proltgbliénsitiesy;,.s(7 = r/2z) obtained
from numerical simulations fof = 100 and.S = 1000. Both distributions show a maximum
aroundr7 = 1 and the same decay in the tail as the distribution of numberey, i.e. an
exponential decay for smafl’, and faster than exponential decay for largéwvalues. This
similarity is expected since the distribution of number cégators decays very rapidly, so that
large values of must arise due to large valuesiof

Obtaining an analytical solution fqm,.s(r) is considerably more difficult than fgs,,., or
Dpred DECAUSE it requires one to estimate the correlations bettieenumber of prey and the
number of predators. The rules underlying the niche modghirthat the number of predators
is negatively correlated with the number of prey. That isap & species having a large number
of predators is likely to have a low niche number, and thuslitlikely predate upon few or no
species. This attribute of the niche model is discussed irerdetail in Section 2.7.

If one neglects, for the moment, correlations between tegildution of number of prey and
number of predators, the probability density for the scatedl number of linksy = r/2z, is
found simply by the convolution of both distributions. Irethimit C' < 1, one has
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Fig. 4. (A) Linear and (B) log-linear plots of the the proldapidensities for the scaled number of links,
7 = r/2z. We show results for = 10 and web sizes’ = 100 (dotted line) andS = 1000 (dashed
line). The two curves show a similar behavior: A maximum awbt = 1, and a tail dominated by the
distribution of number of prey. Fof = 1000, one hasC = 0.01 and the decay is exponential. For
S = 100, C = 0.1 and the decay is faster than exponential (see Fig. 2). Weshlse two analytical
curves in the limitC' — 0: the convolution, Eq. (16), fotr = 10 (thick solid line) and forz = oo (thin
solid line). As with the simulations, the theoretical cus\aso display a maximum at~ 1. The decay
for both analytical curves is exponential, as is the cas¢hdistribution of number of prey far' — 0.

Pins(7) = [ Prrey (pprea( — 1)
0

= /T Ei(t)y(22(7 —t) +1,2z2) dt (16)

This integral cannot be expressed in terms of recognizabietions, but can be calculated
numerically. In Fig. 4 we plot the prediction of Eq. (16) fer= 10. As we obtained for the
simulations of the model, we find a maximumgf,, aroundr = 1 and an exponential decay
in the tail. The latter arises from the exponential tail fduor the distribution of number of
prey, as previously mentioned.

One can also obtain an explicit expression fign, whenz — oo. One expects this solution
not to differ much from that for a finite, since the only difference is that a smooth step in
the distribution of the number of predators around= 1 is substituted by a sharp one. As
discussed in the previous section, the limitg et co andC <« 1 yield
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1 if m <2z,
Pprea(m) = (17)

0 if m>2z.

Integration of Eq. (16) then yields

_ 1 — Ey(7) if 7<1,
plinks(r) = { B B . B (18)
Ex (1 — 1) — Eq(7) if 7 >1.

with By (z) = 1—exp(—z)+x E; (x) the exponential-integral of order2 (Gradstheyn and Ryzhik
2000). Figure 4 also displays Eq. (18), showing a curve rathmeilar to the convolution for
z = 10 except close tg = 1.

From the analytical solution, one can demonstrate thagiheftp;;,,; decays exponentially. For
larger, Eg. (18) can be approximated by

Ey(F — 1) — Ey(F) = —FEy(F — 1/2)

= FEi(r—1/2)
exp(—T +1/2)
~ 19
F-1/2 (19)
whereFE} = —F, is the derivative of functiorf, and the last expression is the dominant term

in the expansion of exponential-integral functions (Gthdgn and Ryzhlki, 2000). Note that
Eq. (19) is a good approximation of Eq. (18) for- 2.

2.5 Fraction of top, intermediate, basal and cannibal spsci

As the names indicate, top species have no predators anbdpesses have no prey, while
intermediate species are those with both prey and preddtioesraction’’ of top species is, by
definition,

1 —exp(—2z
T = pprea(0) = L2 (20)

as directly seen from Eq. (14). Typically empirical websdnaw 2z < 20, a region for which
Eg. (20) can be approximated simply&s= 1/2z.

To calculate the fractio® of basal species, we note that a species has no prey onlyafi¢e

a falls in a region with no species. In the limit of large the probability density for finding an
empty interval of lengtld is Se=%, as predicted by the canonical distribution (Pathria, 972
Thus, the probability of finding a species-free segment ogtle larger tham: is e=5¢, which
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Fig. 5. Fraction of top and basal species as a function ofitkade density:. The shaded region corre-
sponds to the interval of typically observed in empirical food weklls (Dunne etlal.,2200A) Compar-
ison of the results for 1000 simulations of food webs for Whignlated species were removed with our
theoretical prediction Egs. (20), solid line, and (22) haakline, for fraction of top species. (B) Compar-
ison of the results of 1000 simulations of food webs for whigdilated species were removed with our
theoretical prediction Egs. (21), solid line, and (22),éakline, for fraction of basal species. Note that
for both T and B there is good agreement between the analytical expresaiwhthe numerical results
whenC' <« 1. Also note that the theoretical predictions provide narbmunds for the numerical results
in this limit.

yields the probability for a species with a rangaot to prey on other species. Using Eq. (8), it
follows that the fraction of bottom species is:

In(1 + 22)

B = /da e %(a) = — 5, (21)
0

Note that we must take this approach to the calculation tsectne definition of the fractioR
of basal specieg,..;(0), leads, in the continuous analysis, to a divergence as thenextial-
integral function® (z) diverges in the limit: — 0.

In the niche model, isolated species are eliminated, soareegot counted toward top and basal
species. To correct Egs. (20) and (21) for this effect, wetraasount for the isolated species
in our calculations. We estimate the number of isolatedispéo first order by assuming that
having no prey is statistically independent of having napters, implying that the fraction of
isolated species is just the product of the fractions of togh lsasal species. This assumption
does not take into account the (negative) correlations émtvthe number of prey of a species
and its number of predators. Nonetheless, this simple appetion provides an upper bound
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Fig. 6. Fraction of cannibals as a function of the conne@a&nd/Ve plot the fraction of cannibal species
averaged over 5000 realizations of the model for two sysieassand the predictions of Egs. (23) and
(24). 1t is visually apparent that the results are inseresito changes it and that they are in good
agreement with our theoretical predictions. The shaded iadicates one standard deviation from the
average fotS = 25; the upper and lower curves have been obtained using Eqsaiidg24). Our results
demonstrate that in the niche model the fraction of cangilapends only upon the connectance.

for the number of isolated species which leads to lower bewwmd™ and B,

_T-TB oy _B-TB

T=-"_""" =_
1-TB’ 1-TB

(22)

In Fig. 5, we compare our analytical predictions for thefi@tof top and basal species with nu-
merical simulations of the model. As expected, Egs. (20p2@)ide bounds for the numerical
results in the limitC' < 1.

The fraction of intermediate species is just 1 — (T' + B).

Another quantity of ecological interest is the fraction ahaibal species. Consider a speaies
with niche number;. Its preys are the species inside an interval of length- xn;, chosen
according to Eq. (1), and centered with uniform probabilitythe interval[a;/2, n;]. Fori to
predate on itself, it is necessary that the segment of leygtbntains species This is equiv-
alent to the distance between the center of the segment ameing smaller tham; /2, which
occurs with probabilityy /(n; — %). Therefore, the average probabilifyfor a species to be a
cannibal is given by

1
g= /b(l — )t . f/j/zdx = ,Fy(1,1;2C;1/2) — 1 (23)
0

where, F} is the Gauss hypergeometric function (Gradstheyn and Ky2800). One thus finds
that, for any value of5, the fraction of cannibals depends only ugdnEquation (23) can be
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expanded for small’ as

g~ C+2C*+0(C?. (24)
Since the largest value @f reported in the literature i8.3, we expect Eq. (24) to provide a
good approximation for empirically relevant values(6{Fig. 6).

Next, we evaluate the standard deviatioryoff ¢ denotes the number of cannibal species in a
single realization of the model withi species, the corresponding fraction of cannibals is simply
ge = (/S. Therefore, the standard deviation @fis o, = A/¢/S. Sincey is the probabilitiy

for a species to be a cannibal, the probability of having #xadacannibal species is given by a
binomial distribution

Pean(l) = <§> gi(1—g)"" (25)

Therefore A¢? = Sg(1 — g), and the standard deviation for the fraction of cannibalsm

o= L2 (26)

This expression implies that, decreases with increasirtg

2.6 Standard deviation of generality and vulnerability

The vulnerability of a prey is defined as its numberof predators, and the generality of a
predator as its numbér of prey. Following Williams and Martinez (2000), we define thor-
malized standard deviations of the vulnerabilitysgs = m?/m? — 1 and of the generality as

o2 = k2/k° — 1. By definition, one has = % = .

To evaluatery, we first calculaten?. Equation (14) yieldsn? = 42%/3 + z, so that

1 1
oy = _+_7 (27)
V3 =z

which approache§/1/3 asz — oo (Fig. 7). Since Eq. (14) is valid only in the limit$ > 1
andC' < 1, these are also the limits of validity for Eq. (27). We preagbese results, as well as
simulations of the niche model in Fig. 7(A).

We next calculater; by direct evaluation ok2. If S >> 1, the number of prey of a species
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Fig. 7. Normalized standard deviations of generality andenability as a function of the average link-
age density:. The shaded region corresponds to the interval tfpically observed in empirical food
webs (Dunne et al., 2002). (A) Comparison of the results @f¥0lsimulations of food webs for which
isolated species were removed with our theoretical priedidq. (27) for the standard deviation of the
vulnerability. (B) Comparison of the results for 1000 siatidns of food webs for which isolated species
where removed with our theoretical prediction Eq. (29) fa standard deviation of the generality. Note
that Eq. (27) is only valid in the limits of > 1 andC <« 1, which is confirmed in (A) by the deviations
found for.S = 100. Equation (29) was derived independent of these limits Aod holds for any value
of C. The small underestimation of our expression der relates to the fact that; = Sr; is a good
approximation only when the fluctuations iof are small, which is no longer true for smaill

having a range is k = Sa, yielding

k2 a2 nZa?  8(b+1)

o2 - ) 28
2ooar mar 3(b+2) (28)
Thus,oq Is
g8 1
=4/= — 1. 29
7= \31120 (29)

ForC <« 1, 0¢ = 4/5/3, a result that can also be obtained from Eq. (9). Unlike E@),(2
Eq. (29) depends upaii and thus does not require the same limits considered in tinaten
of Eq. (27). We show these results as well as those for nualaiimulations of the niche model
in Fig. 7(B).
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Fig. 8. (A) Distribution ofr..,, the correlation coefficient between number of prey and rermbpreda-
tors obtained from 5000 realizations of the niche model. Wassimulation results for = 10. (B)
Comparison of the average correlation coefficient obtaiinech 5000 simulations of the model (for
which isolated species where removed) with our theorepoadiiction, Eq. (39). The negative correla-
tions observed are inherent to the model, as a species halénge number of predators is likely to have
a low niche number, and consequently will predate upon femompecies.

2.7 Correlation coefficient

The mechanisms by which webs are constructed in the nichelnmogly that a species with
many predators is likely to have a low niche value. Furtheaya species with a low niche value
probably feeds on few prey. As a consequence, the more predaspecies has, the smaller the
number of prey will be, and vice versa. Thus, the number of pf@ species and its number of
predators must be negatively correlated.

In order to quantify the correlations betwegrand m we define the correlation coefficient
between the number of prey and the number of predators,

km — km

RN =R e

(30)

where, as before, the bar over a variable denotes an averagalbspecies in a web.

We evaluate the average correlation coefficient, for the niche model in the limits' > 1
andC < 1. Equation (30) can be rearranged to yield

km/z2 — 1
po = B/ L (31)
oGOy
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whereo; andoy, are the normalized standard deviations of the generaldytlaa vulnerability
respectively. Thus, in order to obtain a closed form for B4.)(we need only to calculate

S
km = Z km p(k,m), (32)
0

k,m=

wherep(k, m) is the probability that a species hagprey andm predators. Ifc andm were
independenty(k, m) would be simply the produgt,,c, (k)pprea(m), yielding

s S
km = Z kpprey () Z MPprea(m) = ki = 2° (33)
k=0 m=0

andr.... = 0. However,k andm are not independent.

Let us definep(k, m,n) as the probability that a species Hagprey, m predators, and niche
numbern. One then has

p(k,m,n) = p(k|m, n)p(m|n)p,(n) . (34)

wherep( | ) refers to the conditional probability.

Remembering that, (n) = 1 and noticing thap(k|m, n) = p(k|n) because the number of prey
in the niche model is determined solely by the niche valuene can write

plbm) = [ dnplk,m,n) = [ dnp(kin)p(min). (35)
Using Eq. (35) in EqQ. (32) and rearranging terms, yields

T — /dnk_m_ (36)

with k,, andm,, the average number of prey and of predators for a specieshigite number..
One can calculatg, by realizing that, = Snz andSz = 2z, so that

k, = SnT = 2zn. (37)
In the limits.S > 1 andC < 1, the potential predators of a species with niche valaee those

species with niche values larger thanEach of these species has a probabifitgf preying on
it. Therefore, the average number of predators for a spadibsiiche valuen is

My, =51 —n)T =22(1—n). (38)
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Substituting Egs. (37) and (38) into Eq. (36), one obtains= 222 /3. Finally, using Eq.(27)
and Eq.(29) in the limiC' — 0 one obtains

R (39)

o T (14 3)7)

In Fig. 8(A), we show the probability density of model realiz-.,,. The figure demonstrates
that fluctuations from the average value are not negliginiéfas large as 100. In Fig. 8(B) we
compare Eq.(39) with numerical simulations of the niche etgithding good agreement in the
limits of interest,S > 1 andC' <« 1. The two figures confirm our initial hypothesis that the
niche model generates webs with negative correlationsdetivandm.

2.8 Assortativity

The assortativity of a food web quantifies the correlatiolwieen the number of links—trophic

interactions—of a species and the number of links of its ey predators (Newman, 2002).
In a food web with positive assortativity—an assortativedaveb—highly connected species
tend to be connected to one another. Conversely, in a foodwitkbnegative assortativity—

a disassortative food web—highly connected species temorioect to species with a small
number of links. Prior work by Newman (2002) suggests thabdativity tends to be positive

for social networks and negative for technological anddgadal networks. In this subsection
we evaluate the assortativity of the food webs generatetidpiche model in the limit of large

S and smallC'.

Let us consider a trophic interaction in the network, in vithilke predator has trophic links
and the prey hag trophic links. The assortativityl is defined as (Newman, 2002)

(') — ()2

- 2 2
() (5

(40)

where(. ..) denotes the average over all trophic links in the food web.

We first calculatérr’). In section 2.7 we obtained the average number of prey anavitrage
number of predators for a species with niche numberamelyk,, = 2zn, andm,, = 22(1—n).
Thus the average number of links of a species with niche number, = &, + m, = 2z,
which is independent af. It follows then that the average number of links is the saonefl
species, independently of the niche number. Therefoemd’ are independent variables, so
that (rr’) = (r)(r’).

In order to evaluate these averages, we transform the asoagr links{- - -), to averages over
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species; . Let us callr; the number of links of the predator in linkby definition(r) is

(r) = Zls s, (41)

where L is the number of links in the network. The predator from lirkdenoted as species
j—hask; prey, so that it appears as the predatok;itinks. Therefore, one can write

<T>ZM. (42)

Sincer; = k; + m;, the numerator can be rewritten 82 + k m), with the overbar denoting
an average over species, as used in previous sectiondyFame has

(r) = k2 +km 7 (43)

z

Analogously, one can obtain

o T
ry = R (44)

T3 1L 102 k2—
<r2>:k +km2+3 m’ (45)

z

_W+k2m+3km2

z

(r) (46)

These averages can be evaluated as in section 2.7 (see Appgrsubstituting Egs. (43)—(46)
into Eq. (40), one obtains

Qz/3-1/2° _ (47)

A= —
2622/9 + 2/3 + 1/4 =

In Fig. 9, we compare this expression with numerical simaoiet and find good agreement in
the limits for which our derivation is valid.

2.9 Robustness of the analytical results

In Table 1 we summarize the analytical results obtained Herrtiche model. An important
question is that of the robustness of our predictions to gasun the particular formulation of
the detailsof the model. The approximations used in the derivationfiefexpressions for the
distributions of the number of prey and predators, Egs.1i#l)(44), allow us to conclude that:
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Fig. 9. (A) Distribution of the assortativityl obtained from 5000 realizations of the niche model. We
show simulation results for = 10. (B) Comparison of the average assortativity obtained f&@@0
simulations of the model (for which isolated species whermaved) with our theoretical prediction,
Eq. (47). As predicted by Eq. (47), the niche model yields sviilat are slightly disassortative in the
limit of large S. For smallS, food webs become slightly assortative at large linkagesities.

Property Expression
Distribution of number of prey Pprey(k) = (1/22) By (k/22)
Distribution of number of predators  ppeq(m) = (1/22) y(m + 1, 22)
Fraction of top species T = 1=op(222)
Fraction of basal species B = %

Fraction of cannibals g=92F1(1,1;2C;1/2) — 1

~ C +2C? 4+ 0(C?)
Standard deviation of the vulnerability oy =+1/3+1/z
Standard deviation of the generality oc=+8/(3+6C) -1

Prey-predators correlation coefficient Teor = —ﬁ
z
- - - 2
Assortativity A= —%
Table 1

Summary of the analytical expressions obtained for theenimbdel in the limitsS > 1 andC' <« 1.

(1) The distribution of number of prey depends on the fumaidorm ofp(x), but Eq. (9) will
still be obtained for any(x) decaying exponentially as (or 7) tends to zero.

(2) The distribution of number of predators does not depenthe specific form op(x). The
only requirement is that the connectari¢e= z/2 tends to zero under some limit, so that
2z = SC remains finite whert’ — oo.
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Thus, it is safe to conclude that our findings are robust ugdie general conditions, a result
that is not possible to obtain without an analytic treatnoérihe problem. Moreover, as we will
show in the next section, the quantitative patterns unea/ér the niche model (Table 1) are
important guides for the study of empirical food webs.

3 Patternsin food web structure

In this section, we compare the predictions of our theoaéolution of the niche model with
data from empirical food webs obtained from a variety of emvinents. Remarkably, we find
that the quantitative patterns uncovered for the niche iradde describe the properties of food
webs pertaining to very diverse habitats, such as fresmwatgine-freshwater interfaces, and
terrestrial ecosystems.

3.1 Cumulative distributions

The reported empirical food webs generally contain a smatilmer of trophic species. This fact
implies that the empirical distributions of the number aéypand number of predators will be
quite noisy. For this reason, we consider here the cumeldistributions instead of probability
density functions.

We first derive an analytical expression for the cumulatiisridution of humber of prey,
Prrey(> k) = X >k Porey (K'), in the limit of large sizes and small connectances. Sin@e is
generally quite smaller thah one can substitute the sum by an integral with negligiblerer
yielding

k
Pprey(> k’) - E2 <£>

k k k

which, similarly to Eq. (9), predicts an exponential decay largek. In terms of the scaled
variablek = k/2z, we obtain

Porey(> k) = exp (—k) — k By (k) | (49)

which, as Eq. (9), contain®o free parameters

Next, we derive an analytical expression for the cumulatigéribution of number of predators.
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In the limits.S > 1 andC < 1, one can use Eq. (14) to obtain

1 & ,
Pyea(>m) = 2 Z y(m' +1,22), (50)

As we have already noted, for < 2z the gamma function can be approximatedyés: +
1,2z) ~ 1. We can then rewrite Eq. (50) as

1 m—1
Pupea(>m)=1—— > y(m'+1,22) ~1— m , m<2z. (51)
2z =, 2z

Form > 2z, EQ. (51) decays as the error function (Gradstheyn and Ky2B00).

Next, we analyze the empirical data for fifteen food webs &®#Hho 155 trophic species. These
webs have linkage densitidst < z < 17.7, and connectances in the interva26—0.315
(Williams and Martinez, 2000; Dunne et al., 2002). We firgeistigate the distributions of num-
ber of prey and number of predators. In Figs. 10-12 we contpareumulative distributions of
the number of prey, number of predators, and number of todpiks for species in the fifteen
food web investigated with the numerical predictions ofriinedel for their specific values of
andz.

To quantify the agreement between the empirical data anthtitel, we apply the Kolmogorov-
Smirnov (KS) test to the empirical distributions—prey,gaeor, and number of trophic links—
and 1000 realizations of the model. The average output dkgheest is plotted in Fig. 13. We
regard P < 0.01—shown in black in Fig. 13—as strong evidence for the repectf the
null hypothesis. Our results suggest that eleven of theefif®od webs studied are well ap-
proximated by the niche model: Bridge Brook, Skipwith, Gualta, Caribbean Reef, Benguela,
St. Martin, Shelf, Chesapeake, St. Marks, Little Rock, ama@s&land. The remaining four—El
Verde, Canton, Ythan, and Stony Stream—exhibit ratheerdfit behavior, which is visually
apparent in Figs. 10-12 and confirmed by the results in Fig. 13

Equations (48)—(51) and the results of Figs. 10—13 sugbegpassibility that, to first approx-
imation, P,,., and P,..q obey universal functional forms that depend only :orin order to
further investigate whether these patterns of similanigyteue, as well as if these distributions
are universal, we perform the Kolmogorov-Smirnov test leetvall pairs of food webs. To
do this we take advantage of the scaling determined earlig¢iuae the scaled variables as the
basis for comparison. Equation (49) predicts tRat, (> k) depends only oit/2z. The scal-
ing of P,..a(> m) is not as straightforward. As discussed before, “true”iagdholds only for
m/2z < 1/2, while for larger values ofn/2z there is a Gaussian decay of the probability func-
tion with an explicit dependence an However, the decay fan > z is quite fast and, to first
approximation, not very relevant.

We show the results of these tests in Fig. 14. We use the saewtioa criterion as before. The
results of Fig. 14 also support the hypothesis that therelauen food webs that conform to the
theoretical predictions.
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Fig. 10. Cumulative distributiorP,.., of numberk of prey for the fifteen food webs studied: Bridge
Brook Lake (Havens, 1992); Skipwith Pond (Walren, 1989)kacwlla Valley(Polis, 1991); Caribbean
Reef [Opitz) 1996); Benguela (Yodzls, 1998); St. Martiratsl (Goldwasser and Roughgaiden, 1993);
Northeast US Shell (Link, 2002); Chesapeake Eay (Baird aladdwicz,|1989); St. Marks Seagrass
(Christian_and Luczkovich, 1999); Little Rock Lake (Masgin| 1991); Grassland (Martinez ef al., 1999);
El Verde Rainforest (Waide and Reagan, 1996); Canton Cieakrsend et all, 1998); Ythan Estuary
(Hall and Raffaellil 1991); and Stony Stream (Townsend efl808). The solid black line represents the
average value from 1000 simulations of the niche model aadytRy region represents two standard
deviations above and below the model’s predictions.
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Fig. 11. Cumulative distributio®,,.q of numberm of predators for the fifteen food webs studied (see
Fig. 10). The solid black line represents the average vatra 1000 simulations of the niche model and
the grey region represents two standard deviations abal/below the model’s predictions.

For this reason, from this point on we will focus our attentigoon these eleven food webs—
Bridge Brook, Skipwith, Coachella, Reef, Benguela, St. tiaShelf, Chesapeake, St. Marks,
Little Rock, and Grassland.

We plotin Figs. 15(A) and (B) the cumulative distributiaRs., (> k) versus the scaled variable

k/2z for the eleven similar food webs and find that the data colapgo a single curve, again

supporting the possibility thdg,,., obeys a universal functional form. Similarly we pl@j,.q (>

m) versus the scaled variabte/2z for the eleven similar food webs in Figs. 15(B) and (C),
again finding a collapse of the data onto a single curverfp?z < 0.5.
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Fig. 12. Cumulative distributio?;,;. of the number- of trophic links for the fifteen food webs studied
(see Fig. 10). The solid black line represents the averadge ¥#@m 1000 simulations of the niche model
and the grey region represents two standard deviationseadray below the model’s predictions.

Figure 15 again supports the strong new hypothesis thatigtebdtions of number of prey
and number of predators followniversal functional formsTo improve statistics and better
investigate the specific functional form of these distridwg, one may pool the scaled variables,
k/2z andm/2z, from the different webs into single distribution3,.., andP,,.q, respectively.
Figures 16(A) and (B) show the cumulative distributions edled number of prey and scaled
number of predators for the pooled webs. Note that the digians are well approximated by
Egs. (49) and (508ven though there are no free parameters to fit in the analitigrves These
results are analogous to the finding of scaling and univigéysalphysical, chemical, and social
systems|(Stanley, 1971, 1999; Bunde and Havlin, 1994).
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Fig. 13. Comparison of the distributions of prey, predatargl total number of links of the fifteen food
webs to the respective distributions obtained from 1000siggimerated by the niche model. We use the
KS test for the comparison. Column one is the result for igtion of prey, column two the result for
distribution of predators, and column three the result fstrithution of total number of links. We regard
Pxks < 0.01—shown in black—as strong evidence for the rejection of thiehypothesis.

In Fig. 16 we plot the probability densities for the disttilom of number of prey and number of
predators for the pooled webs. It is visually apparent tbh#t bistributions are different. This is
confirmed by the Kolmogorov-Smirnov test which rejects tb# hnypothesis at the 0.2% level.
The distribution of number of prey decays exponentially le/ttihe distribution of number of
predators is essentially a step function.

One can perform a similar analysis for the distributigr. of the number of trophic links. As

for number of prey or number of predators, the data from tfferéint webs, upon the scaling
r/2z, collapse onto a single curve, further supporting the Hypsis that scaling holds for food
web structure. To better determine the specific functiooahfof py;,, (), in Fig. 16(D) we pool
the scaled variables,/2z, from the eleven food webs into a single distribution. We fihalt
pink(7) has an exponential decay fof2z > 1, in agreement with our theoretical calculations.
Therefore, there is a characteristic scale for the linkagyesity, i.e. food webs daot have

a scale-free structure, in contrast to erroneous repontsdent studies of food-web fragility
(Saolé and Montoya, 2001; Montoya and $olé, 2002).

The analytical expression for the distribution of the totamber of links, Eq. (16), was derived
assuming that the number of prey and number of predatorsrarernelated. In Fig. 17 we
compare the empirical.,, with data generated from simulations of the niche modelait loe
seen that, just as in the niche model, food webs show, onga&eslightly negative correlation
between number of prey and number of predators. It is alsoitapt to note that for both the
empirical data and the niche model, the is a wide range oflplessorrelation coefficients which
may occur.
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Fig. 14. Comparison of the distributions of prey, predatarsl total number of links of the fifteen em-
pirical food webs. We use the KS test for the comparison. Ekalting matrices may be interpreted as
similarity matrices with value§ < Pxg < 1, the KS probability. We show the matrix for distribution
of prey k in the top left, the matrix for distribution of predatons in the top right, and the matrix for
distribution of total number of links in the bottom left. We regar®ks < 0.01—shown in black—as
strong evidence for the rejection of the null hypothesis.

3.2 Assortativity

It has been reported that technological and biological agtgvare most commonly disassortive,
in contrast to social networks which are most commonly @atee in naturel(Newman, 2002).

We analyze the assortativities of the fifteen empirical fa@ibs investigated and compare this
data to numerical simulations of the model. We confirm thatifawebs are mostly disassortative.
However, the assortativities cover a wide range of valuesmfmoderately disassortative to
slightly assortative. The numerical results from simwlas of the niche model also show a
similarly wide range of possible values, as shown in Fig. 18.
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Fig. 15. Visual test of the “scaling hypothesis” that thetritisitions of number of prey, predators, and
trophic links have the same functional form for differenbdowebs. (A) Cumulative distributiof,;c,
of the scaled number of prdy/2z for the eleven food webs. The solid line is the prediction qf @8).
The data “collapse” onto a single curve that agrees well whth analytical results. (B) Cumulative
distribution P,,.q of the scaled number of predators/2z for the eleven webs. The solid line is the
analytical prediction of Eg. (50) for the average value of the empirical data; = 8.44 (C) Cumulative
distribution Py, Of the scaled number of predatorg2z for the eleven webs. The solid line is the
analytical prediction. Semi-logarithmic plot of the s@hblistributions of (D) number of prey, (E) number
of predators, and (F) total number of links. The symbols laosé introduced in Fig. 10.

3.3 Cannibalism

We determine the fraction of cannibal species as a functitimeoconnectancé’ for the empir-
ical webs considered, and compare it with the predictionhefmhiche and the random model
analyzed in Appendix B. We find that the analytical expras$w cannibalism supplied by the
niche model captures the behavior of all fifteen food webstweys In contrast, the predictions
of the random model, shown in Fig. 19(B), cannot capture #feabior of Coachella or the
Caribbean Reef webs.

It is observed that the empirical values are generally ssn#dian the predictions. Indeed, some
food webs have no cannibals at all. Such low ratios of catisibas seen by some authors
as unrealistic, and possibly due to the large effort needduniiid a comprehensive food web
(Palis, 1991).
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scaled number of predators;/2z, for the eleven pooled webs. The solid lines are, respégtiviee
analytical predictions Eq. (49) and (50), the latter witle tiverage value = 8.44. (C) Cumulative
distribution of the number of trophic interactions per spee = k + m for the eleven pooled webs. The
solid line is obtained by numerically convolving the distriions Eq. (49) and (50) while the dashed line
is obtained by numerical simulations of the niche modelSet 511 andz = 8.44, the parameter values
of the pooled distributions. The tail of the distributioncdgs exponentially, indicating that food webs do
not have a scale-free structure.
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Fig. 17. Correlation coefficient between number of prey auohiber of predators for the fifteen food
webs investigated. Probability density plot for the catiein coefficients obtained empirically compared
to the probability density of.., from 5000 realizations of the niche model at the averageqrtigs of

the empirical webs studieds = 64 andz = 8.06. Note the good agreement between data and model
predictions. The white boxes represent the eleven food wish are well described by our analytical
expressions and the niche model while the grey boxes reyprdsefour food webs which are not.
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Fig. 18. Assortativity of the fifteen food webs investigatBdobability density plot for the assortativities
obtained empirically compared to the probability densityassortativity from 5000 realizations of the
niche model at the average properties of the empirical waliiesl, namelyS = 64 andz = 8.06.
The food webs are, on average, slightly disassortativeglhiewy they cover a wide range of values from
moderately disassortative to slightly assortative andfathese behaviors are captured in the predictions
of the model. Assortativities were calculated as outlinedNewman| 2002). As in Fig. 17, the white
boxes represent the eleven food webs which are well deschibeour analytical expressions and the
niche model while the grey boxes represent the four food weiish are not.

3.4 Network theory mesaures

Next, we investigate if the scaling hypothesis suggestatidgnalysis of distribution of trophic

links also applies to other quantities characterizing faeth structure. We consider two quanti-

ties with ecologic implications: (i) the average trophistdncel between species (Watts and Strogatz,
1998), which is defined as the typical number of species re&mlé¢rophically connect two

given species, and (ii) the clustering coeffici€nfWatts and Strogatz, 1998) which quantifies

the fraction of species triplets that form fully-connectadngles.

In Fig. 20(A) we compare our numerical results for the averagphic distancéd for the niche
model (Williams and Martinez, 2000) with the values caltedefor the food webs analyzed. We
observe that there is agreement between the niche modeharapirical data. Remarkably,
the behavior predicted by the model also holds for randatioizaf the empirical data, where
the randomization of links between species is such thatitetitions of number of predators
and number of prey remain the same. We also find¢hatreases with web size &gz S both
for the model and for the data.

The results of Fig. 20(A) also support the scaling hypothasd suggest that the average dis-
tance in a food web may also follow a unique functional form ddferent food webs. This
feature is predicted remarkably well by the niche modelndee the four webs for which the
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Fig. 19. Fraction of cannibal species as a function of theneotanceC' for empirical webs relative to
(A) the niche model and (B) the random model. Thick soliddigerrespond to model predictions Egs.
(24) and (B.1), respectively. The shaded area is within ti&odard deviations from the model average.
One observes that the empirical results are in good agrdemitnthe niche model. The dashed lines
represent the best fit quadratic (A) and linear (B) expressior the empirical data. The symbols are
those introduced in Fig. 10 except that the four poorly appnated food webs are filled in grey.

model fails to describe other topological properties.

Figure 20(B) shows our results for the clustering coeffici&of the food webs studied and for
the niche model. We find that the data is well approximatedheyrmodel predictions which
show thatC decreases to zero d3S as web sizeS increases. This result does not hold for
Grassland—which has a much higher value than predicted-fen@anton or Stony Stream—
which feature much lower values than predicted. As for trexaye distance, the niche model
accurately predicts the values of the clustering coefftogeen after the randomization of the
empirical food webs. Again, this suggests that there arastoleatures inherent in the simple
framework of the niche model which allows it to describe wedl most complete empirical data
available.

4 Concluding remarks

The major finding of this study is the uncovering of unifyingaaptitative patterns character-
izing the structure of food webs from diverse environme8isecifically, we find that, for the
majority of the most complete empirical food webs, the distions of the number of prey,
number of predators, and number of trophic links obey usalescaling functions, where the
scaling quantity is the linkage density. Remarkably, theesding functions are consistent with
analytical predictions we derived for the niche model. Blfiere, our results suggest that these
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Fig. 20. (A) Scaled average trophic distantbetween species versus linkage densityVe compare
the data with the numerical simulations of the niche mad&llidths and Martinez, 2000) for web sizes
S =100, 500, 1000 (thin solid lines). We find a logarithmic increase of the aggr distance with web size
S for the empirical food webs, in good agreement with the maaedlictions. (B) Double-logarithmic
plot of the clustering coefficierd versus the scaled web sig¢2z. We compare the data with numerical
results for the niche model (Williams and Martinez, 2000)tfoee values of the linkage density in the
empirically-relevant rangez(= 2.5, 5, 10). We find that the clustering coefficient of the food webs is
inversely proportional to the web siZg in good agreement with the model predictions and with the
asymptotic behavior predicted for a random graph_(WattsStrmbatz, 1998). For both (A) and (B)
the grey circles represent the average values calculabed 000 randomizations of the links of the
empirical food webs keeping the same distributions of nunoibgrey and number of predators. Note
that the behavior of these randomized webs is still captarete well by the niche model implying
that the underlying distributions themselves are respbador this behavior. The symbols are those
introduced in Fig. 10 except that the four poorly approxedatood webs are filled in grey.

distributions can be theoretically predicted merely bywimg the food web’s linkage density,
a parameter readily accessible empirically.

Our results are of interest for a number of reasons. Firstréisults of Fig. 20—which also
support the scaling hypothesis—indicate that there is ily, if any, compartmentalization
in ecosystems (Pimm and Lawton, 1980), suggesting thelpbigsihat ecosystems are highly
interconnected and that the removal of any species may éldinge disturbances. Second, reg-
ularities such as these are interesting as descriptorgit interactions inside communities
because they may enable us to make predictions in the abséhagh-quality data, and pro-
vide insight into how ecologic communities function and assembled. Third, the structure
of food webs is different from that of many other biologicatworks in two important as-
pects: the links are uni-directional and the in- and outrdeglistribution are different. These
two facts are a result of thdirectedcharacter of the trophic interactions and of the asymme-
try it creates. Interestingly, the niche model captures #symmetry in its rules, which may
explain its success in explaining the empirical resultsurffg food webs do not have a scale
free distribution of number of links (total, prey, or predia). This may be viewed as surprising
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since one could expect most species to try to prey on the rbasidant species in the ecosys-
tem (an “abundant-get-eaten” kind of mechanism). Such tepmetial attachment would lead

to a scale-free distribution of links; instead, we find a Brgrale distribution, suggesting that
species specialize and prey on a small set of other species.

We do not intend to provide here a detailed study of why fouthef fifteen food webs we
consider do not accomodate to the patterns we report. We naitietheless, offer a few re-
marks on this matter. The four webs that do not conform to @itepns are Ythan Estuary,
Canton Creek, Stony Stream, and El Verde Rainforest. Letstsciinsider the Ythan Estuary
web. It has been noted already that this web displays anrepeesentation of top bird species
(Williams and Martinez, 2000) which could account for th#atiences. For Canton Creek and
Stony Stream two aspects distinguish them from the otheat Weebs. First, they are quantita-
tively quite similar. This fact is illustrated by noting ththe Kolmogorov-Smirnov test provides
Pxs 0f 0.565, 0.045, and0.794 under direct comparison of their respective distributiohsum-
ber of prey, number of predators, and total number of linfgtfurther investigation this easily
explained as the original authors stated plainly that it theg intention to compile food webs
from habitats that were as similar as possible to each dllm&r{send et all, 1998). Second, the
Canton Creek and Stony Stream webs are also time specifimébow et al!, 1998)—meaning
their data was collected solely on one occasion—as opposegulative—which are based
upon data collected on multiple occasion until reaching es@tate of “completeness.” This
time specific nature not only distinguishes them from allhaf other food webs which we have
studied, but also implies that they contain rather differeformation and are not directly com-
parable to cumulative food webs in our framework. We lastlgirass the El Verde Rainforest
food web by pointing out that over one third of the links werd abservered in the field but
rather are based upon iteractions involving closely rdlafgecies in the forest or observations
or published accounts of the interaction outside of thesfiop@/aide and Reagan, 1996).

To conclude, we want to stress that our findings are remagkabltwo main reasons: (i) they
hold for eleven out of fifteen of the most complete food welsligtd, in contrast to previously
reported patterns, and (ii) they support the conclusion filmdamental concepts of modern
statistical physics such as scaling and universality—wmere developed for the study of
inanimate systems—may be succesfully applied in the stdidgaal webs—which comprise
animate beings (Camacho el al., 26ii2/Garlaschelli et all, 2003). Indeed, our results are con-
sistent with the underlying hypothesis of scaling theomsy,, ifood webs display “universal”
patterns in the way trophic relations are established tespiparently “fundamental” differ-
ences in factors such as the environment (e.g. marine veggestrial), ecosystem assembly,
and past history.
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A Variables

Model Variable
variable definition

S Number of trophic species

L Total number of trophic links
C Directed connectancé€; = L /5>
z Linkage density; = L/S

n Niche number in niche model, € [0, 1]
a Range of predation in niche model
x Beta-distributed random variable

b Characteristic parameter for beta-distributiorzof




Patterns in food web structure, J. Camacho et al. 37

Ecological Variable
variable  definition

k Number of prey

k Scaled number of prey, = k/2z

m Number of predators

m Scaled number of predators, = m/2z

r Total number of trophic links; = k£ +m

T Scaled total number of trophic link8= r/2z
T Fraction of top species

B Fraction of basal species

1 Fraction of intermediate species

g Fraction of cannibals

oy Standard deviation of vulnerability

oG Standard deviation of generality
Teor Correlation coefficient between species number

of prey and number of predators
A Assortativity

B Fraction of cannibal speciesfor arandom linking model

In this Appendix we calculate the fraction of cannibal spedor a random model, i.e. a model
where the links between species are placed at random. FetenswithS species and average
number of links per species, the probability that a spe@edd on itself will be

z

Grand = g =C. (Bl)

The standard deviation gf,.q is obtained from Eq. (26) by using= g,..a, Yielding

Gran 1— Gran,
Ugrand = \/ d( S d> : (B-2)

In the limit of small C, the predictions of both models are similar. Note that tlisuos re-
gardless of the particular form of.(z). In fact, C' — 0 is equivalent tor — 0, so thatp,(z)
takes non-vanishing values only for very smallOne can then negleat/2 versusl in the
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denominator of Eq. (23) and get
t; x/2
/ 1——x/2

Therefore, only the second term in the right hand side ofesgion Eq. (24) depends on the
specific form ofp,.(x).

=C = Grand - (B.3)

[\DIHI

C Calculation of the moments of the distributions of number of prey and number of
predators

In this Appendix we calculate averages of the type/, with i andj integers, in the limit
of large web sizes and small connectances. These averageset in the calculation of the
assortativity, in Section 2.8.

In Section 2.7, we obtained Eq. (35) for the join probabitity, ), namely

plkm) = [ dnp(k,m,n) = [ dnp(kln)p(min). (C.1)
With this, the average we want to calculate writes

1 g g 1 -
Kimi = /dn <Z k;ip(k\n)> <Z mjp(m|n)> —~ /dnk_;m%. (C.2)
0 k=0 m=0 0

The probabilityp(k|n) of a species with niche value to havek prey can be calculated as
follows. According to the rules of the niche model, in orderiavek prey, the parameter
must take the value = k/Sn. Then, by performing a change of variables, one obtains

p(kln) = —epe(), c3)
wherep, is given by Eq. (1). In the limit of small’, p, can be approximated by

pz(x) = bexp(—br) =~ 2C exp(—x/2C). (C.4)
Then,p(k|n) is given by

plkin) = 5 — exp(— ). c5)

2nz 2nz
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The average valugs, can be evaluated, in the limit of smdll, as

— 7.1 k 4
ki = | K exp( ) = (2n2)" 1! (C.6)
/

2nz T 2nz

In order to evaluaten), we needp(m|n). In the limit S > 1 andC' < 1, the number of
potencial predators of a species of niche valughat is, the number of species with a niche
number larger than) is S(1 — n). As seen in Section 2.3, each of them has a probahility
prey on the species. Thus, the probability that a speciégsméhe parameter hasm predators

is simply the binomial distribution,

plal) = (30 Y1 -z, €7

m

that in our limit yields the Poisson distribution, namely

A" exp (—A

plmpn) = YR, c8
with

A=S(1—-n)T=2z(1—-n). (C.9)
One can now obtain the moments

Mo =\ (C.10)

m2 =X\ 4+ \ (C.11)

m3 =N+ 323+ ). (C.12)
Finally, using Eq. (C.6), (C.9) and (C.10)—(C.12) into EQ.X), yields

k=m=z, (C.13)

k? =82%/3, (C.14)

kS =122°, (C.15)

m? =z +42%/3, (C.16)

m3 =z + 422 + 223, (C.17)

km =22%/3, (C.18)
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km? =22°(142)/3, (C.19)

and

k2m = 42%/3. (C.20)
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