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Abstract
We analyze the properties of model food webs and of fifteen community food webs from a
variety of environments —including freshwater, marine-freshwater interfaces and terrestrial
environments. We first perform a theoretical analysis of a recently proposed model for food
webs—the niche model of Williams and Martinez (2000). We derive analytical expressions for
the distributions of species’ number of prey, number of predators, and total number of trophic
links and find that they follow universal functional forms. We also derive expressions for a
number of other biologically relevant parameters which depend on these distributions. These
include the fraction of top, intermediate, basal, and cannibal species, the standard deviations
of generality and vulnerability, the correlation coefficient between species’ number of prey and
number of predators, and assortativity. We show that our findings are robust under rather general
conditions; a result which could not have been demonstratedwithout treating the problem ana-
lytically. We then use our analytical predictions as a guideto the analysis of fifteen of the most
complete empirical food webs available. We uncover quantitative unifying patterns that describe
the properties of the model food webs and most of the trophic webs considered. Our results sup-
port a strong new hypothesis that the empirical distributions of number of prey and number of
predators followuniversal functional forms that, without free parameters,match our analytical
predictions. Further, we find that the empirically observed correlationcoefficient, assortativity,
and fraction of cannibal species are consistent with our analytical expressions and simulations
of the niche model. Finally, we show that two quantities typically used to characterize com-
plex networks, the average distance between nodes and the average clustering coefficient of the
nodes, show a high degree of regularity for both the empirical data and simulations of the niche
model. Our findings suggest that statistical physics concepts such as scaling and universality
may be useful in the description of natural ecosystems.

Key words: Food webs, complex networks, network structure, scaling,universality, patterns.



Patterns in food web structure, J. Camacho et al. 3

1 Introduction

In ecosystems, species are connected through intricate trophic relationships which define com-
plex food webs (Briand and Cohen, 1984; Cohen et al., 1990; Williams and Martinez, 2000).
Understanding the structure and mechanisms underlying theformation of these complex webs is
of great importance in ecology (Rejmanek and Stary, 1979; Briand and Cohen, 1987; Cohen et al.,
1990; Polis, 1991). In particular, food web structure provides insights into the behavior of
ecosystems under perturbations such as the introduction ofnew species or the extinction of
existing ones. It is thought that the nonlinear response of the elements composing the net-
work may lead to possibly catastrophic outcomes for even small perturbations (Berlow, 1999;
Chapin et al., 2000; McKann, 2000). Thus, an understanding of the topology and assembly
mechanisms of food webs may be of great practical interest with regard to crop selection, man-
agement of fishing stocks, preservation of threatened ecosystems, and maintenance of biodiver-
sity (Pimm et al., 1995; Stone, 1999; Covington, 2000; Hutchings, 2000).

Due to the importance of food webs, much effort has been put into collecting empirical data
and uncovering unifying patterns which describe their structure (Rejmanek and Stary, 1979;
Briand and Cohen, 1984, 1987; Lawton and Warren, 1988; Cohenet al., 1990; Hall and Raffaelli,
1991; Pimm et al., 1991; Polis, 1991; Martinez, 1993). However, in the last decade the con-
struction of larger and more complete food webs has clearly demonstrated that the previously
reported unifying patterns do not hold for the new webs (Halland Raffaelli, 1991, 1993; Polis,
1991). Indeed, the complexity of the new webs has rendered itquite challenging to obtain quan-
titative patterns with which to “substitute” the old ones (Dunne et al., 2002).

The purpose of this work is twofold. First, to perform a theoretical analysis of a recently pro-
posed model for food webs—the niche model of Williams and Martinez (2000). Second, to use
the predictions of the model as a guide to a systematic statistical analysis of community food
webs from a variety of environments.

Remarkably, we uncover quantitative unifying patterns that describe the properties of most of
the diverse trophic webs considered and capture the random and non-random aspects of their
structure. Specifically, we find that several quantities—such as the distributions of number of
prey, number of predators, and number of trophic links—characterizing these diverse food webs
obey robust functional forms that, as predicted by our analytical results for the niche model,
depend on a single parameter—the linkage density of the foodweb.

The organization of the paper is as follows. In Section 2 we study the niche model proposed
by Williams and Martinez (2000) analytically and numerically. In Section 3 we analyze the
empirical food webs and show the existence of robust quantitative patterns. Finally, in Section
4 we present some concluding remarks.



Patterns in food web structure, J. Camacho et al. 4

2 Analytical solution of the niche model

Recently, Williams and Martinez (2000) have proposed a model for food web structure—the
niche model—that with just a couple of ingredients appears to successfully predict key structural
properties of the most comprehensive food webs in the literature. Numerical simulations of the
niche model predicted values for many quantities typicallyused to characterize empirical food
webs that are consistent with measured values for seven empirical webs.

In this Section, we systematically investigate the niche model from atheoreticalperspective.
We obtain analytical expressions for a number of quantitiescharacterizing the structure of food
webs in the limit of sparse food webs, i.e., webs withL ≪ S2, whereL is the number of
trophic interactions between species andS is the number of species in the web. This limit is the
one of interest in ecology because (i) for most food webs reported in the literature the directed
connectance, defined asC ≡ L/S2, take values much smaller than one, and (ii) it corresponds
to the limit of large web sizesS (Briand and Cohen, 1984, 1987; Solé et al., 2002), which is the
interesting limit if one surmises that geographically separate ecosystems are in fact connected.

We first calculate the probability distributions of number of prey and of number of predators
and find that forC ≪ 1 they depend only on one parameter of the model—the linkage density
z ≡ L/S , i.e. the average number of prey or predators. These distributions give valuable
information about the structure of the network (Albert et al., 2000) and enable us to calculate
other interesting quantities such as the fraction of “top,”“intermediate,” and “basal” species,
and the standard deviation of the “vulnerability” and “generality” of the species in the food web
(Williams and Martinez, 2000). We also calculate the correlation coefficient between number of
prey and number of predators, the fraction of cannibals present, and two additional properties
of interest in the characterization of complex networks: the average “distance” between species
and the local redundancy of the connection between species (Watts and Strogatz, 1998).

2.1 The niche model

Consider an ecosystem withS species andL trophic interactions between these species. These
species and interactions define a network withS nodes andL directed links. In the niche model,
one first randomly assignsS species to “trophic niches” with niche valuesni mapped uniformly
onto the interval [0,1]. For convenience, we will assume that the species are ordered according
to their niche number, i.e.,n1 < n2 < ... < nS.

A speciesi is characterized by its niche parameterni and by its list of prey. Prey are chosen
for all species according to the following rule: A speciesi preys on all speciesj with niche
parameternj inside a segment of lengthai centered in a position chosen randomly inside the
interval [ai/2, ni], with ai = xni and0 ≤ x ≤ 1 a random variable with probability density
function

px(x) = b (1 − x)(b−1) . (1)
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Williams and Martinez (2000) appeared to have chosen this functional form for convenience,
but, we will show later that the predictions of the model are mostly robust to changes in the
specific form ofpx.

The values of the parametersb andS determine the linkage densityz = L/S of the food web,
and the directed connectanceC = L/S2. Since the species are uniformly distributed along the
segment[0, 1], one can express the average number of prey per species asSa, where the bar
indicates an average over all species in the web. It then follows that the linkage density is

z = Sa (2)

and the connectance is

C = a . (3)

One can also obtain these expressions in terms ofb by noting thatn andx are independent
variables, namely

a = nx =
1

2 (1 + b)
, (4)

wheren = 1/2 andx = 1/ (1 + b).

In the niche model, isolated species—that is, species with no prey or predators—are eliminated,
and species with the same list of prey and predators—that is,trophically-identical species—are
“merged.” ForC = a ≪ 1, the probability that two species are trophically identical is very
small. This suggests that taxonomic and trophic classifications of species lead to similar results
in this limit (Williams and Martinez, 2000).

In the following subsections we derive analytical expressions that enable us to predict the prop-
erties of the webs generated by model.

2.2 Distribution of number of prey

For largeS, the number of prey of speciesi is ki = Sai, so that the probability of havingk prey
pprey is given directly by the distribution ofa. Specifically,

pprey(k) = p(a)/S . (5)

In order to evaluatep(a), let us note thata is the product of two independent stochastic variables,
n andx, both ranging between0 and1. As illustrated in Fig. 1, it then follows that the cumulative
probabilityP (a′ > a) =

∫ 1
a da′p(a′) is the probability that a pair of random values(n, x) fall
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Fig. 1. Calculation of the distribution of segment lengthsa. Each point inside then − x diagram yields
a valuea = nx. The hyperbolenx = const divides then − x plane in two regions, which we color
grey and white. The regionR, colored in grey, contains all the points for whicha > 0.5. Therefore, the
probability of drawing a pair(n, x) belonging to regionR can be calculated using Eq. (6).

in the regionR of then − x diagram bounded by the linesx = 1, n = 1, and the hyperbole
a = nx,

P (a′ > a) =

1
∫

a

da′p(a′)

=
∫

R

dx dn pn(n) px(x)

=

1
∫

a

dx

1
∫

a/x

dn pn(n) px(x) , (6)

wherepn(n) = 1 is the probability density function forn. The integration of Eq. (6) gives rise
to a closed form involving hypergeometric functions (Gradstheyn and Ryzhik, 2000).

However, we can obtain a simpler analytical solution forp(a) than that given by the hypergeo-
metric functions as follows. In the limitC ≪ 1, which impliesb ≫ 1, px(x) is negligible except
whenx ≪ 1. We can then approximatepx as

px(x) = b (1 − x)(b−1) ≃ be−bx . (7)

in the entirex-range and expect the results to remain unchanged in the limit C ≪ 1. Under this
approximation, the solution of Eq. (6) yields

p(a) = bE1(ba) , (8)
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Fig. 2. (A) Linear and (B) log-linear plots of the distribution of number of prey for 1000 simulations
of food webs withS = 1000. We show results forz = 5 and10 and the corresponding theoretical
predictions. As predicted by Eq. (9), we find an exponential decay of the distributions. (C) Log-linear
plot of the probability densities for the scaled number of prey k/2z for finite C. We show results for
C = 0.05, 0.1 and 0.2, for 50000 webs generated using the niche model. Dashed lines (solid lines)
correspond to simulations withS = 100 (S = 1000) for the appropriate values ofz (namelyz = 5, 10,
and20, for S = 100, andz = 50, 100, and200 for S = 1000). The thick solid line is the theoretical
prediction in the limitC → 0. One observes the collapse of distributions having the sameC but different
S, similar to what we derived analytically forC → 0. Note that the decay is faster than exponential for
finite C.

whereE1(x) =
∫∞

x dt t−1 exp(−t) is the exponential-integral function (Gradstheyn and Ryzhik,
2000). The probability distributionpprey(k) is obtained from Eq. (8) making the substitutions
a = k/S andb = S/2z—which are valid in the limitC ≪ 1—yielding

pprey(k) = (1/2z) E1(k/2z) . (9)

In Figs. 2(A) and (B) we compare the predictions of Eq. (9) with numerical simulations of the
model. We find close agreement between our analytical expression and the numerical results.
In particular,pprey shows an exponential decay for largek. The deviations observed for small
values ofk are due to the fact thatkj = Saj is a good approximation only when the fluctuations
of kj are small, which is not true for smallk.

Equation (9) depends only on the scaled number of preyk/2z. Thus, forany value ofz, the
scaled variablẽk = k/2z obeys the same probability density function,

pprey(k̃) = E1(k̃) . (10)

This probability density function is therefore universal,i.e., it is identical for any values ofS
andz provided thatC is small. For finiteC, pprey has a truncation of the exponential decay at a
value ofk̃ that is a decreasing function ofC. Remarkably, even for finiteC, pprey only depends
onC; cf. Fig. 3(A).
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Fig. 3. (A) Linear and (B) log-linear plots of the distribution of number of predators for 1000 simula-
tions of food webs withS = 1000. We show results forz = 5 and10 and the corresponding theoretical
predictions. As predicted by Eq. (14), we find a regime where the distribution is approximately uniform
followed by a Gaussian decay. (C) Log-linear plot of the analytical expressions for the probability den-
sities for the scaled number of predatorsm/2z for three values ofz. For all values ofz, we find an
approximately constant value ofppred for m/2z < 1 (shaded region) and a fast Gaussian-like decay for
m/2z > 1.

2.3 Distribution of number of predators

For C ≪ 1 the predators of speciesi have niche valuesnj > ni, and the segmentaj is placed
with equal probability in the interval[0, nj ]. Therefore, the probability that a speciesj preys on
i, providednj > ni, is

aj/nj = xjnj/nj = xj , (11)

implying that the average probability that a species withnj > ni preys on speciesi is x.

If one notes that speciesi has(S − i) potential predators—those species withnj > ni—then
it follows that, in the limitC ≪ 1, the total number of predators ofi is the result of(S −
i) independent “coin-throws” with probabilityx of a given speciesj, with nj > ni, being a
predator. This fact implies that the probability of speciesi havingm predators is given by the
binomial distribution,

pi
pred(m) =

(

S − i

m

)

xm(1 − x)S−m−i (12)

It then follows that the distribution of number of predatorsfor the set of all species in the web
is an average over the binomials for the different values ofi

ppred(m) =
1

S

S−m
∑

i=1

pi
pred(m) =

1

S

S−m
∑

i=1

(

S − i

m

)

xm(1 − x)S−m−i (13)
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In the limit of interest,S ≫ 1, and withSx = 2z, one can approximate the binomial distribution
by a Poisson and the sum by an integral, yielding

ppred(m) =
1

2z

2z
∫

0

dt
tme−t

m!
=

1

2z
γ(m + 1, 2z), (14)

whereγ is the “incomplete gamma function” (Gradstheyn and Ryzhik,2000). Form < 2z,
ppred is approximately constant becauseγ(m + 1, 2z) ≈ 1, while for m > 2z ppred decays with
a Gaussian tail. In Figs. 2(A) and (B), we compare the predictions of Eq. (14) with numerical
simulations and find good agreement.

Unlike the scaling seen for the distribution of number of prey, Eq. (14) is not simply a function
of the scaled variablem/2z. However, for small values ofm/2z, γ is a constant and thus it does
not depend onm or z. So, the probability density for the scaled variablem̃ = m/2z,

ppred(m̃) = γ(2z m̃ + 1, 2z) ≈ 1 m̃ < 1 (15)

for anyz. For m̃ > 1, ppred(m̃) decays as a Gaussian. In Fig. 3(B) we show that the decay rate
of ppred increases withz, becoming a sharp step drop atm̃ = 1 asz → ∞.

2.4 Distribution of number of trophic links

The numberr of trophic links of a species is the sum of the number of prey and number of
predators of that species. In Fig. 4, we display the probability densitiesplinks(r̃ = r/2z) obtained
from numerical simulations forS = 100 andS = 1000. Both distributions show a maximum
aroundr̃ = 1 and the same decay in the tail as the distribution of number ofprey, i.e. an
exponential decay for smallC, and faster than exponential decay for largerC values. This
similarity is expected since the distribution of number of predators decays very rapidly, so that
large values ofr must arise due to large values ofk.

Obtaining an analytical solution forplinks(r) is considerably more difficult than forpprey or
ppred because it requires one to estimate the correlations between the number of prey and the
number of predators. The rules underlying the niche model imply that the number of predators
is negatively correlated with the number of prey. That is to say, a species having a large number
of predators is likely to have a low niche number, and thus it will likely predate upon few or no
species. This attribute of the niche model is discussed in more detail in Section 2.7.

If one neglects, for the moment, correlations between the distribution of number of prey and
number of predators, the probability density for the scaledtotal number of links,̃r = r/2z, is
found simply by the convolution of both distributions. In the limit C ≪ 1, one has
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Fig. 4. (A) Linear and (B) log-linear plots of the the probability densities for the scaled number of links,
r̃ = r/2z. We show results forz = 10 and web sizesS = 100 (dotted line) andS = 1000 (dashed
line). The two curves show a similar behavior: A maximum around r̃ = 1, and a tail dominated by the
distribution of number of prey. ForS = 1000, one hasC = 0.01 and the decay is exponential. For
S = 100, C = 0.1 and the decay is faster than exponential (see Fig. 2). We alsoshow two analytical
curves in the limitC → 0: the convolution, Eq. (16), forz = 10 (thick solid line) and forz = ∞ (thin
solid line). As with the simulations, the theoretical curves also display a maximum at̃r ≈ 1. The decay
for both analytical curves is exponential, as is the case forthe distribution of number of prey forC → 0.

plinks(r̃) =

r̃
∫

0

pprey(t)ppred(r̃ − t) dt

=

r̃
∫

0

E1(t)γ(2z(r̃ − t) + 1, 2z) dt (16)

This integral cannot be expressed in terms of recognizable functions, but can be calculated
numerically. In Fig. 4 we plot the prediction of Eq. (16) forz = 10. As we obtained for the
simulations of the model, we find a maximum ofplinks aroundr̃ = 1 and an exponential decay
in the tail. The latter arises from the exponential tail found for the distribution of number of
prey, as previously mentioned.

One can also obtain an explicit expression forplinks whenz → ∞. One expects this solution
not to differ much from that for a finitez, since the only difference is that a smooth step in
the distribution of the number of predators aroundm̃ = 1 is substituted by a sharp one. As
discussed in the previous section, the limits ofz → ∞ andC ≪ 1 yield
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ppred(m) =











1 if m < 2z,

0 if m > 2z.
(17)

Integration of Eq. (16) then yields

plinks(r̃) =











1 − E2(r̃) if r̃ < 1,

E2(r̃ − 1) − E2(r̃) if r̃ > 1.
(18)

with E2(x) = 1−exp(−x)+xE1(x) the exponential-integral of order 2 (Gradstheyn and Ryzhik,
2000). Figure 4 also displays Eq. (18), showing a curve rather similar to the convolution for
z = 10 except close tõr = 1.

From the analytical solution, one can demonstrate that the tail of plinks decays exponentially. For
larger̃, Eq. (18) can be approximated by

E2(r̃ − 1) − E2(r̃)≃−E ′
2(r̃ − 1/2)

= E1(r̃ − 1/2)

≃ exp(−r̃ + 1/2)

r̃ − 1/2
, (19)

whereE ′
2 = −E1 is the derivative of functionE2 and the last expression is the dominant term

in the expansion of exponential-integral functions (Gradstheyn and Ryzhik, 2000). Note that
Eq. (19) is a good approximation of Eq. (18) forr̃ > 2.

2.5 Fraction of top, intermediate, basal and cannibal species

As the names indicate, top species have no predators and basal species have no prey, while
intermediate species are those with both prey and predators. The fractionT of top species is, by
definition,

T ≡ ppred(0) =
1 − exp(−2z)

2z
, (20)

as directly seen from Eq. (14). Typically empirical webs have2 < 2z < 20, a region for which
Eq. (20) can be approximated simply asT = 1/2z.

To calculate the fractionB of basal species, we note that a species has no prey only if itsrange
a falls in a region with no species. In the limit of largeS, the probability density for finding an
empty interval of lengthδ is Se−Sδ, as predicted by the canonical distribution (Pathria, 1972).
Thus, the probability of finding a species-free segment of length larger thana is e−Sa, which
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Fig. 5. Fraction of top and basal species as a function of the linkage densityz. The shaded region corre-
sponds to the interval ofz typically observed in empirical food webs (Dunne et al., 2002). (A) Compar-
ison of the results for 1000 simulations of food webs for which isolated species were removed with our
theoretical prediction Eqs. (20), solid line, and (22), dashed line, for fraction of top species. (B) Compar-
ison of the results of 1000 simulations of food webs for whichisolated species were removed with our
theoretical prediction Eqs. (21), solid line, and (22), dashed line, for fraction of basal species. Note that
for bothT andB there is good agreement between the analytical expressionsand the numerical results
whenC ≪ 1. Also note that the theoretical predictions provide narrowbounds for the numerical results
in this limit.

yields the probability for a species with a rangea not to prey on other species. Using Eq. (8), it
follows that the fraction of bottom species is:

B =

1
∫

0

da e−Sap(a) =
ln(1 + 2z)

2z
. (21)

Note that we must take this approach to the calculation because the definition of the fractionB
of basal species,pprey(0), leads, in the continuous analysis, to a divergence as the exponential-
integral functionE1(x) diverges in the limitx → 0.

In the niche model, isolated species are eliminated, so theyare not counted toward top and basal
species. To correct Eqs. (20) and (21) for this effect, we must account for the isolated species
in our calculations. We estimate the number of isolated species to first order by assuming that
having no prey is statistically independent of having no predators, implying that the fraction of
isolated species is just the product of the fractions of top and basal species. This assumption
does not take into account the (negative) correlations between the number of prey of a species
and its number of predators. Nonetheless, this simple approximation provides an upper bound



Patterns in food web structure, J. Camacho et al. 13

0 0.1 0.2 0.3 0.4
Connectance, C

0

0.2

0.4

0.6

0.8

C
an

ni
ba

lis
m

, g

S = 25
S = 250
Eq. (23)
Eq. (24)

Fig. 6. Fraction of cannibals as a function of the connectance C. We plot the fraction of cannibal species
averaged over 5000 realizations of the model for two system sizes, and the predictions of Eqs. (23) and
(24). It is visually apparent that the results are insensitive to changes inS and that they are in good
agreement with our theoretical predictions. The shaded area indicates one standard deviation from the
average forS = 25; the upper and lower curves have been obtained using Eqs. (26) and (24). Our results
demonstrate that in the niche model the fraction of cannibals depends only upon the connectance.

for the number of isolated species which leads to lower bounds onT andB,

T ′ =
T − TB

1 − TB
, B′ =

B − TB

1 − TB
(22)

In Fig. 5, we compare our analytical predictions for the fraction of top and basal species with nu-
merical simulations of the model. As expected, Eqs. (20–22)provide bounds for the numerical
results in the limitC ≪ 1.

The fraction of intermediate species is justI = 1 − (T + B).

Another quantity of ecological interest is the fraction of cannibal species. Consider a speciesi
with niche numberni. Its preys are the species inside an interval of lengthai = xni, chosen
according to Eq. (1), and centered with uniform probabilityin the interval[ai/2, ni]. For i to
predate on itself, it is necessary that the segment of lengthai contains speciesi. This is equiv-
alent to the distance between the center of the segment andni being smaller thanai/2, which
occurs with probabilityai

2
/(ni − ai

2
). Therefore, the average probabilityg for a species to be a

cannibal is given by

g =

1
∫

0

b(1 − x)b−1 x/2

1 − x/2
dx = 2F1(1, 1; 2C; 1/2)− 1 (23)

where2F1 is the Gauss hypergeometric function (Gradstheyn and Ryzhik, 2000). One thus finds
that, for any value ofS, the fraction of cannibals depends only uponC. Equation (23) can be
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expanded for smallC as

g ≃ C + 2C2 + O(C3). (24)

Since the largest value ofC reported in the literature is0.3, we expect Eq. (24) to provide a
good approximation for empirically relevant values ofC (Fig. 6).

Next, we evaluate the standard deviation ofg. If ℓ denotes the number of cannibal species in a
single realization of the model withS species, the corresponding fraction of cannibals is simply
gℓ = ℓ/S. Therefore, the standard deviation ofgℓ is σg = ∆ℓ/S. Sinceg is the probabilitiy
for a species to be a cannibal, the probability of having exactly ℓ cannibal species is given by a
binomial distribution

pcan(ℓ) =

(

S

ℓ

)

gℓ(1 − g)S−ℓ. (25)

Therefore,∆ℓ2 = Sg(1 − g), and the standard deviation for the fraction of cannibalismis

σg =

√

g(1 − g)

S
. (26)

This expression implies thatσg decreases with increasingS.

2.6 Standard deviation of generality and vulnerability

The vulnerability of a prey is defined as its numberm of predators, and the generality of a
predator as its numberk of prey. Following Williams and Martinez (2000), we define the nor-
malized standard deviations of the vulnerability asσ2

V = m2/m2 − 1 and of the generality as
σ2

G = k2/k
2 − 1. By definition, one hasm = k = z.

To evaluateσV , we first calculatem2. Equation (14) yieldsm2 = 4z2/3 + z, so that

σV =

√

1

3
+

1

z
, (27)

which approaches
√

1/3 asz → ∞ (Fig. 7). Since Eq. (14) is valid only in the limitsS ≫ 1
andC ≪ 1, these are also the limits of validity for Eq. (27). We present these results, as well as
simulations of the niche model in Fig. 7(A).

We next calculateσG by direct evaluation ofk2. If S ≫ 1, the number of prey of a species
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Fig. 7. Normalized standard deviations of generality and vulnerability as a function of the average link-
age densityz. The shaded region corresponds to the interval ofz typically observed in empirical food
webs (Dunne et al., 2002). (A) Comparison of the results for 1000 simulations of food webs for which
isolated species were removed with our theoretical prediction Eq. (27) for the standard deviation of the
vulnerability. (B) Comparison of the results for 1000 simulations of food webs for which isolated species
where removed with our theoretical prediction Eq. (29) for the standard deviation of the generality. Note
that Eq. (27) is only valid in the limits ofS ≫ 1 andC ≪ 1, which is confirmed in (A) by the deviations
found forS = 100. Equation (29) was derived independent of these limits and thus holds for any value
of C. The small underestimation of our expression forσG relates to the fact thatkj = Srj is a good
approximation only when the fluctuations ofkj are small, which is no longer true for smallk.

having a rangea is k = Sa, yielding

k2

k
2 =

a2

a2
=

n2 x2

n x2
=

8(b + 1)

3(b + 2)
. (28)

Thus,σG is

σG =

√

8

3

1

1 + 2C
− 1. (29)

For C ≪ 1, σG =
√

5/3, a result that can also be obtained from Eq. (9). Unlike Eq. (27),
Eq. (29) depends uponC and thus does not require the same limits considered in the derivation
of Eq. (27). We show these results as well as those for numerical simulations of the niche model
in Fig. 7(B).
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Fig. 8. (A) Distribution ofrcor, the correlation coefficient between number of prey and number of preda-
tors obtained from 5000 realizations of the niche model. We show simulation results forz = 10. (B)
Comparison of the average correlation coefficient obtainedfrom 5000 simulations of the model (for
which isolated species where removed) with our theoreticalprediction, Eq. (39). The negative correla-
tions observed are inherent to the model, as a species havinga large number of predators is likely to have
a low niche number, and consequently will predate upon few orno species.

2.7 Correlation coefficient

The mechanisms by which webs are constructed in the niche model imply that a species with
many predators is likely to have a low niche value. Furthermore, a species with a low niche value
probably feeds on few prey. As a consequence, the more predators a species has, the smaller the
number of prey will be, and vice versa. Thus, the number of prey of a species and its number of
predators must be negatively correlated.

In order to quantify the correlations betweenk and m we define the correlation coefficient
between the number of prey and the number of predators,

rcor =
km − k m

√

k2 − k
2
√

m2 − m2
(30)

where, as before, the bar over a variable denotes an average over all species in a web.

We evaluate the average correlation coefficient,rcor, for the niche model in the limitsS ≫ 1
andC ≪ 1. Equation (30) can be rearranged to yield

rcor =
km/z2 − 1

σGσV
, (31)
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whereσG andσV are the normalized standard deviations of the generality and the vulnerability
respectively. Thus, in order to obtain a closed form for Eq. (31), we need only to calculate

km ≡
S
∑

k,m=0

km p(k, m) , (32)

wherep(k, m) is the probability that a species hask prey andm predators. Ifk andm were
independent,p(k, m) would be simply the productpprey(k)ppred(m), yielding

km =
S
∑

k=0

kpprey(k)
S
∑

m=0

mppred(m) = km = z2 (33)

andrcorr = 0. However,k andm are not independent.

Let us definep(k, m, n) as the probability that a species hask prey,m predators, and niche
numbern. One then has

p(k, m, n) = p(k|m, n)p(m|n)pn(n) . (34)

wherep( | ) refers to the conditional probability.

Remembering thatpn(n) = 1 and noticing thatp(k|m, n) = p(k|n) because the number of prey
in the niche model is determined solely by the niche valuen, one can write

p(k, m) ≡
∫

dn p(k, m, n) =
∫

dn p(k|n)p(m|n) . (35)

Using Eq. (35) in Eq. (32) and rearranging terms, yields

km =

1
∫

0

dn kn mn , (36)

with kn andmn the average number of prey and of predators for a species withniche numbern.
One can calculatekn by realizing thatkn = Snx andSx = 2z, so that

kn = Snx = 2zn . (37)

In the limitsS ≫ 1 andC ≪ 1, the potential predators of a species with niche valuen are those
species with niche values larger thann. Each of these species has a probabilityx of preying on
it. Therefore, the average number of predators for a specieswith niche valuen is

mn = S(1 − n)x = 2z(1 − n) . (38)
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Substituting Eqs. (37) and (38) into Eq. (36), one obtainskm = 2z2/3. Finally, using Eq.(27)
and Eq.(29) in the limitC → 0 one obtains

rcor = − 1
√

5(1 + 3/z)
. (39)

In Fig. 8(A), we show the probability density of model realized rcor. The figure demonstrates
that fluctuations from the average value are not negligible for S as large as 100. In Fig. 8(B) we
compare Eq.(39) with numerical simulations of the niche model, finding good agreement in the
limits of interest,S ≫ 1 andC ≪ 1. The two figures confirm our initial hypothesis that the
niche model generates webs with negative correlations betweenk andm.

2.8 Assortativity

The assortativity of a food web quantifies the correlation between the number of links—trophic
interactions—of a species and the number of links of its preyand predators (Newman, 2002).
In a food web with positive assortativity—an assortative food web—highly connected species
tend to be connected to one another. Conversely, in a food webwith negative assortativity—
a disassortative food web—highly connected species tend toconnect to species with a small
number of links. Prior work by Newman (2002) suggests that assortativity tends to be positive
for social networks and negative for technological and biological networks. In this subsection
we evaluate the assortativity of the food webs generated by the niche model in the limit of large
S and smallC.

Let us consider a trophic interaction in the network, in which the predator hasr trophic links
and the prey hasr′ trophic links. The assortativityA is defined as (Newman, 2002)

A =
〈rr′〉 − 〈 r+r′

2
〉2

〈 r2+r′2

2
〉 − 〈 r+r′

2
〉2

, (40)

where〈. . .〉 denotes the average over all trophic links in the food web.

We first calculate〈rr′〉. In section 2.7 we obtained the average number of prey and theaverage
number of predators for a species with niche numbern, namelykn = 2zn, andmn = 2z(1−n).
Thus the average number of links of a species with niche number n is rn = kn + mn = 2z,
which is independent ofn. It follows then that the average number of links is the same for all
species, independently of the niche number. Therefore,r andr′ are independent variables, so
that〈rr′〉 = 〈r〉〈r′〉.

In order to evaluate these averages, we transform the averages over links,〈· · ·〉, to averages over
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species,· · ·. Let us callri the number of links of the predator in linki, by definition〈r〉 is

〈r〉 =

∑

links ri

L
, (41)

whereL is the number of links in the network. The predator from linki—denoted as species
j—haskj prey, so that it appears as the predator inkj links. Therefore, one can write

〈r〉 =

∑

species kj rj

L
. (42)

Sincerj = kj + mj , the numerator can be rewritten asS(k2 + k m), with the overbar denoting
an average over species, as used in previous sections. Finally, one has

〈r〉 =
k2 + k m

z
, (43)

Analogously, one can obtain

〈r′〉 =
m2 + k m

z
, (44)

〈r2〉 =
k3 + k m2 + 3 k2m

z
, (45)

〈r′2〉 =
m3 + k2m + 3 k m2

z
. (46)

These averages can be evaluated as in section 2.7 (see Appendix A). Substituting Eqs. (43)–(46)
into Eq. (40), one obtains

A = − (2z/3 − 1/2)2

26z2/9 + z/3 + 1/4
≤ 0 . (47)

In Fig. 9, we compare this expression with numerical simulations and find good agreement in
the limits for which our derivation is valid.

2.9 Robustness of the analytical results

In Table 1 we summarize the analytical results obtained for the niche model. An important
question is that of the robustness of our predictions to changes in the particular formulation of
thedetailsof the model. The approximations used in the derivations of the expressions for the
distributions of the number of prey and predators, Eqs. (9) and (14), allow us to conclude that:
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Fig. 9. (A) Distribution of the assortativityA obtained from 5000 realizations of the niche model. We
show simulation results forz = 10. (B) Comparison of the average assortativity obtained from5000
simulations of the model (for which isolated species where removed) with our theoretical prediction,
Eq. (47). As predicted by Eq. (47), the niche model yields webs that are slightly disassortative in the
limit of large S. For smallS, food webs become slightly assortative at large linkage densities.

Property Expression

Distribution of number of prey pprey(k) = (1/2z)E1(k/2z)

Distribution of number of predators ppred(m) = (1/2z) γ(m + 1, 2z)

Fraction of top species T = 1−exp (−2z)
2z

Fraction of basal species B = ln (1+2z)
2z

Fraction of cannibals g = 2F1(1, 1; 2C; 1/2) − 1

≈ C + 2C2 + O(C3)

Standard deviation of the vulnerability σV =
√

1/3 + 1/z

Standard deviation of the generality σG =
√

8/(3 + 6C) − 1

Prey-predators correlation coefficient rcor = − 1√
5(1+3/z)

Assortativity A = − (2z/3−1/2)2

26z2/9+z/3+1/4

Table 1
Summary of the analytical expressions obtained for the niche model in the limitsS ≫ 1 andC ≪ 1.

(1) The distribution of number of prey depends on the functional form ofp(x), but Eq. (9) will
still be obtained for anyp(x) decaying exponentially asC (or x) tends to zero.

(2) The distribution of number of predators does not depend on the specific form ofp(x). The
only requirement is that the connectanceC = x/2 tends to zero under some limit, so that
2z = SC remains finite whenS → ∞.
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Thus, it is safe to conclude that our findings are robust underquite general conditions, a result
that is not possible to obtain without an analytic treatmentof the problem. Moreover, as we will
show in the next section, the quantitative patterns uncovered for the niche model (Table 1) are
important guides for the study of empirical food webs.

3 Patterns in food web structure

In this section, we compare the predictions of our theoretical solution of the niche model with
data from empirical food webs obtained from a variety of environments. Remarkably, we find
that the quantitative patterns uncovered for the niche model also describe the properties of food
webs pertaining to very diverse habitats, such as freshwater, marine-freshwater interfaces, and
terrestrial ecosystems.

3.1 Cumulative distributions

The reported empirical food webs generally contain a small number of trophic species. This fact
implies that the empirical distributions of the number of prey and number of predators will be
quite noisy. For this reason, we consider here the cumulative distributions instead of probability
density functions.

We first derive an analytical expression for the cumulative distribution of number of prey,
Pprey(> k) =

∑

k′≥k pprey(k
′), in the limit of large sizes and small connectances. Since1/2z is

generally quite smaller than1, one can substitute the sum by an integral with negligible error,
yielding

Pprey(> k) =E2

(

k

2z

)

=exp

(

− k

2z

)

− k

2z
E1

(

k

2z

)

, (48)

which, similarly to Eq. (9), predicts an exponential decay for largek. In terms of the scaled
variablek̃ = k/2z, we obtain

Pprey(> k̃) = exp
(

−k̃
)

− k̃ E1

(

k̃
)

, (49)

which, as Eq. (9), containsno free parameters.

Next, we derive an analytical expression for the cumulativedistribution of number of predators.
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In the limitsS ≫ 1 andC ≪ 1, one can use Eq. (14) to obtain

Ppred(> m) =
1

2z

∞
∑

m′=m

γ(m′ + 1, 2z) , (50)

As we have already noted, form < 2z the gamma function can be approximated asγ(m +
1, 2z) ≃ 1. We can then rewrite Eq. (50) as

Ppred(> m) = 1 − 1

2z

m−1
∑

m′=0

γ(m′ + 1, 2z) ≃ 1 − m

2z
, m < 2z . (51)

Form ≥ 2z, Eq. (51) decays as the error function (Gradstheyn and Ryzhik, 2000).

Next, we analyze the empirical data for fifteen food webs with25 to 155 trophic species. These
webs have linkage densities1.6 < z < 17.7, and connectances in the interval0.026–0.315
(Williams and Martinez, 2000; Dunne et al., 2002). We first investigate the distributions of num-
ber of prey and number of predators. In Figs. 10–12 we comparethe cumulative distributions of
the number of prey, number of predators, and number of trophic links for species in the fifteen
food web investigated with the numerical predictions of themodel for their specific values ofS
andz.

To quantify the agreement between the empirical data and themodel, we apply the Kolmogorov-
Smirnov (KS) test to the empirical distributions—prey, predator, and number of trophic links—
and 1000 realizations of the model. The average output of theKS test is plotted in Fig. 13. We
regardPKS ≤ 0.01—shown in black in Fig. 13—as strong evidence for the rejection of the
null hypothesis. Our results suggest that eleven of the fifteen food webs studied are well ap-
proximated by the niche model: Bridge Brook, Skipwith, Coachella, Caribbean Reef, Benguela,
St. Martin, Shelf, Chesapeake, St. Marks, Little Rock, and Grassland. The remaining four—El
Verde, Canton, Ythan, and Stony Stream—exhibit rather different behavior, which is visually
apparent in Figs. 10–12 and confirmed by the results in Fig. 13.

Equations (48)–(51) and the results of Figs. 10–13 suggest the possibility that, to first approx-
imation, Pprey andPpred obey universal functional forms that depend only onz. In order to
further investigate whether these patterns of similarity are true, as well as if these distributions
are universal, we perform the Kolmogorov-Smirnov test between all pairs of food webs. To
do this we take advantage of the scaling determined earlier and use the scaled variables as the
basis for comparison. Equation (49) predicts thatPprey(> k) depends only onk/2z. The scal-
ing of Ppred(> m) is not as straightforward. As discussed before, “true” scaling holds only for
m/2z < 1/2, while for larger values ofm/2z there is a Gaussian decay of the probability func-
tion with an explicit dependence onz. However, the decay form > z is quite fast and, to first
approximation, not very relevant.

We show the results of these tests in Fig. 14. We use the same rejection criterion as before. The
results of Fig. 14 also support the hypothesis that there areeleven food webs that conform to the
theoretical predictions.
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Fig. 10. Cumulative distributionPprey of numberk of prey for the fifteen food webs studied: Bridge
Brook Lake (Havens, 1992); Skipwith Pond (Warren, 1989); Coachella Valley (Polis, 1991); Caribbean
Reef (Opitz, 1996); Benguela (Yodzis, 1998); St. Martin Island (Goldwasser and Roughgarden, 1993);
Northeast US Shelf (Link, 2002); Chesapeake Bay (Baird and Ulanowicz, 1989); St. Marks Seagrass
(Christian and Luczkovich, 1999); Little Rock Lake (Martinez, 1991); Grassland (Martinez et al., 1999);
El Verde Rainforest (Waide and Reagan, 1996); Canton Creek (Townsend et al., 1998); Ythan Estuary
(Hall and Raffaelli, 1991); and Stony Stream (Townsend et al., 1998). The solid black line represents the
average value from 1000 simulations of the niche model and the grey region represents two standard
deviations above and below the model’s predictions.
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Fig. 11. Cumulative distributionPpred of numberm of predators for the fifteen food webs studied (see
Fig. 10). The solid black line represents the average value from 1000 simulations of the niche model and
the grey region represents two standard deviations above and below the model’s predictions.

For this reason, from this point on we will focus our attention upon these eleven food webs—
Bridge Brook, Skipwith, Coachella, Reef, Benguela, St. Martin, Shelf, Chesapeake, St. Marks,
Little Rock, and Grassland.

We plot in Figs. 15(A) and (B) the cumulative distributionsPprey(> k) versus the scaled variable
k/2z for the eleven similar food webs and find that the data collapse onto a single curve, again
supporting the possibility thatPprey obeys a universal functional form. Similarly we plotPpred(>
m) versus the scaled variablem/2z for the eleven similar food webs in Figs. 15(B) and (C),
again finding a collapse of the data onto a single curve form/2z < 0.5.
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Fig. 12. Cumulative distributionPlink of the numberr of trophic links for the fifteen food webs studied
(see Fig. 10). The solid black line represents the average value from 1000 simulations of the niche model
and the grey region represents two standard deviations above and below the model’s predictions.

Figure 15 again supports the strong new hypothesis that the distributions of number of prey
and number of predators followuniversal functional forms. To improve statistics and better
investigate the specific functional form of these distributions, one may pool the scaled variables,
k/2z andm/2z, from the different webs into single distributions,Pprey andPpred, respectively.
Figures 16(A) and (B) show the cumulative distributions of scaled number of prey and scaled
number of predators for the pooled webs. Note that the distributions are well approximated by
Eqs. (49) and (50)even though there are no free parameters to fit in the analytical curves. These
results are analogous to the finding of scaling and universality in physical, chemical, and social
systems (Stanley, 1971, 1999; Bunde and Havlin, 1994).
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Fig. 13. Comparison of the distributions of prey, predators, and total number of links of the fifteen food
webs to the respective distributions obtained from 1000 webs generated by the niche model. We use the
KS test for the comparison. Column one is the result for distribution of prey, column two the result for
distribution of predators, and column three the result for distribution of total number of links. We regard
PKS ≤ 0.01—shown in black—as strong evidence for the rejection of the null hypothesis.

In Fig. 16 we plot the probability densities for the distribution of number of prey and number of
predators for the pooled webs. It is visually apparent that both distributions are different. This is
confirmed by the Kolmogorov-Smirnov test which rejects the null hypothesis at the 0.2% level.
The distribution of number of prey decays exponentially while the distribution of number of
predators is essentially a step function.

One can perform a similar analysis for the distributionplink of the number of trophic linksr. As
for number of prey or number of predators, the data from the different webs, upon the scaling
r/2z, collapse onto a single curve, further supporting the hypothesis that scaling holds for food
web structure. To better determine the specific functional form ofplink(r), in Fig. 16(D) we pool
the scaled variables,r/2z, from the eleven food webs into a single distribution. We findthat
plink(r) has an exponential decay forr/2z ≫ 1, in agreement with our theoretical calculations.
Therefore, there is a characteristic scale for the linkage density, i.e. food webs donot have
a scale-free structure, in contrast to erroneous reports inrecent studies of food-web fragility
(Solé and Montoya, 2001; Montoya and Solé, 2002).

The analytical expression for the distribution of the totalnumber of links, Eq. (16), was derived
assuming that the number of prey and number of predators are uncorrelated. In Fig. 17 we
compare the empiricalrcor with data generated from simulations of the niche model. It can be
seen that, just as in the niche model, food webs show, on average, slightly negative correlation
between number of prey and number of predators. It is also important to note that for both the
empirical data and the niche model, the is a wide range of possible correlation coefficients which
may occur.
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Fig. 14. Comparison of the distributions of prey, predators, and total number of links of the fifteen em-
pirical food webs. We use the KS test for the comparison. The resulting matrices may be interpreted as
similarity matrices with values0 ≤ PKS ≤ 1, the KS probability. We show the matrix for distribution
of prey k in the top left, the matrix for distribution of predatorsm in the top right, and the matrix for
distribution of total number of linksr in the bottom left. We regardPKS ≤ 0.01—shown in black—as
strong evidence for the rejection of the null hypothesis.

3.2 Assortativity

It has been reported that technological and biological networks are most commonly disassortive,
in contrast to social networks which are most commonly assortative in nature (Newman, 2002).
We analyze the assortativities of the fifteen empirical foodwebs investigated and compare this
data to numerical simulations of the model. We confirm that food webs are mostly disassortative.
However, the assortativities cover a wide range of values from moderately disassortative to
slightly assortative. The numerical results from simulations of the niche model also show a
similarly wide range of possible values, as shown in Fig. 18.
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Fig. 15. Visual test of the “scaling hypothesis” that the distributions of number of prey, predators, and
trophic links have the same functional form for different food webs. (A) Cumulative distributionPprey

of the scaled number of preyk/2z for the eleven food webs. The solid line is the prediction of Eq. (48).
The data “collapse” onto a single curve that agrees well withthe analytical results. (B) Cumulative
distribution Ppred of the scaled number of predatorsm/2z for the eleven webs. The solid line is the
analytical prediction of Eq. (50) for the average value ofz in the empirical data,z = 8.44 (C) Cumulative
distribution Plinks of the scaled number of predatorsr/2z for the eleven webs. The solid line is the
analytical prediction. Semi-logarithmic plot of the scaled distributions of (D) number of prey, (E) number
of predators, and (F) total number of links. The symbols are those introduced in Fig. 10.

3.3 Cannibalism

We determine the fraction of cannibal species as a function of the connectanceC for the empir-
ical webs considered, and compare it with the predictions ofthe niche and the random model
analyzed in Appendix B. We find that the analytical expression for cannibalism supplied by the
niche model captures the behavior of all fifteen food webs we study. In contrast, the predictions
of the random model, shown in Fig. 19(B), cannot capture the behavior of Coachella or the
Caribbean Reef webs.

It is observed that the empirical values are generally smaller than the predictions. Indeed, some
food webs have no cannibals at all. Such low ratios of cannibalism is seen by some authors
as unrealistic, and possibly due to the large effort needed to build a comprehensive food web
(Polis, 1991).
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Fig. 16. Cumulative distributions (A)Pprey of the scaled number of prey,k/2z, and (B)Ppred of the
scaled number of predators,m/2z, for the eleven pooled webs. The solid lines are, respectively, the
analytical predictions Eq. (49) and (50), the latter with the average valuez = 8.44. (C) Cumulative
distribution of the number of trophic interactions per speciesr = k + m for the eleven pooled webs. The
solid line is obtained by numerically convolving the distributions Eq. (49) and (50) while the dashed line
is obtained by numerical simulations of the niche model forS = 511 andz = 8.44, the parameter values
of the pooled distributions. The tail of the distribution decays exponentially, indicating that food webs do
not have a scale-free structure.
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Fig. 17. Correlation coefficient between number of prey and number of predators for the fifteen food
webs investigated. Probability density plot for the correlation coefficients obtained empirically compared
to the probability density ofrcor from 5000 realizations of the niche model at the average properties of
the empirical webs studied,S = 64 andz = 8.06. Note the good agreement between data and model
predictions. The white boxes represent the eleven food webswhich are well described by our analytical
expressions and the niche model while the grey boxes represent the four food webs which are not.
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Fig. 18. Assortativity of the fifteen food webs investigated. Probability density plot for the assortativities
obtained empirically compared to the probability density of assortativity from 5000 realizations of the
niche model at the average properties of the empirical webs studied, namelyS = 64 andz = 8.06.
The food webs are, on average, slightly disassortative; however, they cover a wide range of values from
moderately disassortative to slightly assortative and allof these behaviors are captured in the predictions
of the model. Assortativities were calculated as outlined in (Newman, 2002). As in Fig. 17, the white
boxes represent the eleven food webs which are well described by our analytical expressions and the
niche model while the grey boxes represent the four food webswhich are not.

3.4 Network theory mesaures

Next, we investigate if the scaling hypothesis suggested bythe analysis of distribution of trophic
links also applies to other quantities characterizing foodweb structure. We consider two quanti-
ties with ecologic implications: (i) the average trophic distanced between species (Watts and Strogatz,
1998), which is defined as the typical number of species needed to trophically connect two
given species, and (ii) the clustering coefficientC (Watts and Strogatz, 1998) which quantifies
the fraction of species triplets that form fully-connectedtriangles.

In Fig. 20(A) we compare our numerical results for the average trophic distanced for the niche
model (Williams and Martinez, 2000) with the values calculated for the food webs analyzed. We
observe that there is agreement between the niche model and the empirical data. Remarkably,
the behavior predicted by the model also holds for randomization of the empirical data, where
the randomization of links between species is such that the distributions of number of predators
and number of prey remain the same. We also find thatd increases with web size aslog S both
for the model and for the data.

The results of Fig. 20(A) also support the scaling hypothesis and suggest that the average dis-
tance in a food web may also follow a unique functional form for different food webs. This
feature is predicted remarkably well by the niche model, even for the four webs for which the
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Fig. 19. Fraction of cannibal species as a function of the connectanceC for empirical webs relative to
(A) the niche model and (B) the random model. Thick solid lines correspond to model predictions Eqs.
(24) and (B.1), respectively. The shaded area is within two standard deviations from the model average.
One observes that the empirical results are in good agreement with the niche model. The dashed lines
represent the best fit quadratic (A) and linear (B) expressions for the empirical data. The symbols are
those introduced in Fig. 10 except that the four poorly approximated food webs are filled in grey.

model fails to describe other topological properties.

Figure 20(B) shows our results for the clustering coefficient C of the food webs studied and for
the niche model. We find that the data is well approximated by the model predictions which
show thatC decreases to zero as1/S as web sizeS increases. This result does not hold for
Grassland—which has a much higher value than predicted—norfor Canton or Stony Stream—
which feature much lower values than predicted. As for the average distanced, the niche model
accurately predicts the values of the clustering coefficient even after the randomization of the
empirical food webs. Again, this suggests that there are robust features inherent in the simple
framework of the niche model which allows it to describe wellthe most complete empirical data
available.

4 Concluding remarks

The major finding of this study is the uncovering of unifying quantitative patterns character-
izing the structure of food webs from diverse environments.Specifically, we find that, for the
majority of the most complete empirical food webs, the distributions of the number of prey,
number of predators, and number of trophic links obey universal scaling functions, where the
scaling quantity is the linkage density. Remarkably, thesescaling functions are consistent with
analytical predictions we derived for the niche model. Therefore, our results suggest that these



Patterns in food web structure, J. Camacho et al. 32

0.5 1.0 1.5 2.0

Connectivity, Log(2z)

0.5

1.0

1.5

S
ca

le
d 

di
st

an
ce

, L
og

(S
) 

/ d

Niche model

(A)

10
0

10
1

10
2

Scaled size, S/2z

10
-2

10
-1

10
0

C
lu

st
er

in
g 

co
ef

fic
ie

nt
, C

(B)

Niche model

Fig. 20. (A) Scaled average trophic distanced between species versus linkage densityz. We compare
the data with the numerical simulations of the niche model (Williams and Martinez, 2000) for web sizes
S = 100, 500, 1000 (thin solid lines). We find a logarithmic increase of the average distance with web size
S for the empirical food webs, in good agreement with the modelpredictions. (B) Double-logarithmic
plot of the clustering coefficientC versus the scaled web sizeS/2z. We compare the data with numerical
results for the niche model (Williams and Martinez, 2000) for three values of the linkage density in the
empirically-relevant range (z = 2.5, 5, 10). We find that the clustering coefficient of the food webs is
inversely proportional to the web sizeS, in good agreement with the model predictions and with the
asymptotic behavior predicted for a random graph (Watts andStrogatz, 1998). For both (A) and (B)
the grey circles represent the average values calculated from 1000 randomizations of the links of the
empirical food webs keeping the same distributions of number of prey and number of predators. Note
that the behavior of these randomized webs is still capturedquite well by the niche model implying
that the underlying distributions themselves are responsible for this behavior. The symbols are those
introduced in Fig. 10 except that the four poorly approximated food webs are filled in grey.

distributions can be theoretically predicted merely by knowing the food web’s linkage density,
a parameter readily accessible empirically.

Our results are of interest for a number of reasons. First, the results of Fig. 20—which also
support the scaling hypothesis—indicate that there is verylittle, if any, compartmentalization
in ecosystems (Pimm and Lawton, 1980), suggesting the possibility that ecosystems are highly
interconnected and that the removal of any species may induce large disturbances. Second, reg-
ularities such as these are interesting as descriptors of trophic interactions inside communities
because they may enable us to make predictions in the absenceof high-quality data, and pro-
vide insight into how ecologic communities function and areassembled. Third, the structure
of food webs is different from that of many other biological networks in two important as-
pects: the links are uni-directional and the in- and out-degree distribution are different. These
two facts are a result of thedirectedcharacter of the trophic interactions and of the asymme-
try it creates. Interestingly, the niche model captures this asymmetry in its rules, which may
explain its success in explaining the empirical results. Fourth, food webs do not have a scale
free distribution of number of links (total, prey, or predators). This may be viewed as surprising
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since one could expect most species to try to prey on the most abundant species in the ecosys-
tem (an “abundant-get-eaten” kind of mechanism). Such a preferential attachment would lead
to a scale-free distribution of links; instead, we find a single-scale distribution, suggesting that
species specialize and prey on a small set of other species.

We do not intend to provide here a detailed study of why four ofthe fifteen food webs we
consider do not accomodate to the patterns we report. We will, nonetheless, offer a few re-
marks on this matter. The four webs that do not conform to our patterns are Ythan Estuary,
Canton Creek, Stony Stream, and El Verde Rainforest. Let us first consider the Ythan Estuary
web. It has been noted already that this web displays an over-representation of top bird species
(Williams and Martinez, 2000) which could account for the differences. For Canton Creek and
Stony Stream two aspects distinguish them from the other food webs. First, they are quantita-
tively quite similar. This fact is illustrated by noting that the Kolmogorov-Smirnov test provides
PKS of 0.565, 0.045, and0.794 under direct comparison of their respective distributionsof num-
ber of prey, number of predators, and total number of links. Upon further investigation this easily
explained as the original authors stated plainly that it wastheir intention to compile food webs
from habitats that were as similar as possible to each other (Townsend et al., 1998). Second, the
Canton Creek and Stony Stream webs are also time specific (Townsend et al., 1998)–meaning
their data was collected solely on one occasion—as opposed to cumulative—which are based
upon data collected on multiple occasion until reaching some state of “completeness.” This
time specific nature not only distinguishes them from all of the other food webs which we have
studied, but also implies that they contain rather different information and are not directly com-
parable to cumulative food webs in our framework. We lastly address the El Verde Rainforest
food web by pointing out that over one third of the links were not observered in the field but
rather are based upon iteractions involving closely related species in the forest or observations
or published accounts of the interaction outside of the forest (Waide and Reagan, 1996).

To conclude, we want to stress that our findings are remarkable for two main reasons: (i) they
hold for eleven out of fifteen of the most complete food webs studied, in contrast to previously
reported patterns, and (ii) they support the conclusion that fundamental concepts of modern
statistical physics such as scaling and universality—which were developed for the study of
inanimate systems—may be succesfully applied in the study of food webs—which comprise
animate beings (Camacho et al., 2002a,b; Garlaschelli et al., 2003). Indeed, our results are con-
sistent with the underlying hypothesis of scaling theory, i.e., food webs display “universal”
patterns in the way trophic relations are established despite apparently “fundamental” differ-
ences in factors such as the environment (e.g. marine versusterrestrial), ecosystem assembly,
and past history.
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A Variables

Model Variable

variable definition

S Number of trophic species

L Total number of trophic links

C Directed connectance,C = L/S2

z Linkage density,z = L/S

n Niche number in niche model,n ∈ [0, 1]

a Range of predation in niche model

x Beta-distributed random variable

b Characteristic parameter for beta-distribution ofx
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Ecological Variable

variable definition

k Number of prey

k̃ Scaled number of prey,̃k ≡ k/2z

m Number of predators

m̃ Scaled number of predators,m̃ ≡ m/2z

r Total number of trophic links,r ≡ k + m

r̃ Scaled total number of trophic links,r̃ ≡ r/2z

T Fraction of top species

B Fraction of basal species

I Fraction of intermediate species

g Fraction of cannibals

σV Standard deviation of vulnerability

σG Standard deviation of generality

rcor Correlation coefficient between species number

of prey and number of predators

A Assortativity

B Fraction of cannibal species for a random linking model

In this Appendix we calculate the fraction of cannibal species for a random model, i.e. a model
where the links between species are placed at random. For a system withS species andz average
number of links per species, the probability that a species feeds on itself will be

grand =
z

S
= C. (B.1)

The standard deviation ofgrand is obtained from Eq. (26) by usingg = grand, yielding

σgrand
=

√

grand(1 − grand)

S
. (B.2)

In the limit of smallC, the predictions of both models are similar. Note that this occurs re-
gardless of the particular form ofpx(x). In fact,C → 0 is equivalent tox → 0, so thatpx(x)
takes non-vanishing values only for very smallx. One can then neglectx/2 versus1 in the
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denominator of Eq. (23) and get

g =

1
∫

0

px(x)
x/2

1 − x/2
dx ≃ x

2
= C = grand . (B.3)

Therefore, only the second term in the right hand side of expression Eq. (24) depends on the
specific form ofpx(x).

C Calculation of the moments of the distributions of number of prey and number of
predators

In this Appendix we calculate averages of the typekimj , with i and j integers, in the limit
of large web sizes and small connectances. These averages are used in the calculation of the
assortativity, in Section 2.8.

In Section 2.7, we obtained Eq. (35) for the join probabilityp(k, m), namely

p(k, m) =
∫

dn p(k, m, n) =
∫

dn p(k|n)p(m|n) . (C.1)

With this, the average we want to calculate writes

kimj =

1
∫

0

dn

(

S
∑

k=0

kip(k|n)

)(

S
∑

m=0

mjp(m|n)

)

≡
1
∫

0

dn ki
n mj

n . (C.2)

The probabilityp(k|n) of a species with niche valuen to havek prey can be calculated as
follows. According to the rules of the niche model, in order to havek prey, the parameterx
must take the valuex = k/Sn. Then, by performing a change of variables, one obtains

p(k|n) =
1

nS
px(

k

nS
) , (C.3)

wherepx is given by Eq. (1). In the limit of smallC, px can be approximated by

px(x) ≃ b exp(−bx) ≃ 2C exp(−x/2C). (C.4)

Then,p(k|n) is given by

p(k|n) =
1

2nz
exp(− k

2nz
) . (C.5)
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The average valueski
n can be evaluated, in the limit of smallC, as

ki
n =

∞
∫

0

ki 1

2nz
exp(− k

2nz
) = (2nz)i i! (C.6)

In order to evaluatemj
n we needp(m|n). In the limit S ≫ 1 and C ≪ 1, the number of

potencial predators of a species of niche valuen (that is, the number of species with a niche
number larger thann) is S(1 − n). As seen in Section 2.3, each of them has a probabilityx to
prey on the species. Thus, the probability that a species with niche parametern hasm predators
is simply the binomial distribution,

p(m|n) =

(

S(1 − n)

m

)

xm(1 − x)S(1−n)−m, (C.7)

that in our limit yields the Poisson distribution, namely

p(m|n) =
λm exp (−λ)

λ!
, (C.8)

with

λ = S(1 − n)x = 2z(1 − n) . (C.9)

One can now obtain the moments

mn = λ (C.10)

m2
n = λ2 + λ (C.11)

m3
n = λ3 + 3λ2 + λ . (C.12)

Finally, using Eq. (C.6), (C.9) and (C.10)–(C.12) into Eq. (C.1), yields

k = m = z , (C.13)

k2 = 8z2/3 , (C.14)

k3 = 12z3 , (C.15)

m2 = z + 4z2/3 , (C.16)

m3 = z + 4z2 + 2z3 , (C.17)

k m = 2z2/3 , (C.18)
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k m2 = 2z2(1 + z)/3 , (C.19)

and

k2m = 4z2/3. (C.20)
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